Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990129687> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2990129687 endingPage "171558" @default.
- W2990129687 startingPage "171548" @default.
- W2990129687 abstract "Text classification is one of the most important and typical tasks in Natural Language Processing (NLP) which can be applied for many applications. Recently, deep learning approaches has shown their advantages in solving text classification problem, in which Convolutional Neural Network (CNN) is one of the most successful model in the field. In this paper, we propose a novel deep learning approach for categorizing text documents by using scope-based convolutional neural network. Different from window-based CNN, scope does not require the words that construct a local feature have to be contiguous. It can represent deeper local information of text data. We propose a large-scale scope-based convolutional neural network (LSS-CNN), which is based on scope convolution, aggregation optimization, and max pooling operation. Based on these techniques, we can gradually extract the most valuable local information of the text document. This paper also discusses how to effectively calculate the scope-based information and parallel training for large-scale datasets. Extensive experiments have been conducted on real datasets to compare our model with several state-of-the-art approaches. The experimental results show that LSS-CNN can achieve both effectiveness and good scalability on big text data." @default.
- W2990129687 created "2019-12-05" @default.
- W2990129687 creator A5037742951 @default.
- W2990129687 creator A5040162123 @default.
- W2990129687 creator A5049295023 @default.
- W2990129687 creator A5051906468 @default.
- W2990129687 creator A5061568038 @default.
- W2990129687 creator A5083849025 @default.
- W2990129687 date "2019-01-01" @default.
- W2990129687 modified "2023-10-15" @default.
- W2990129687 title "Large-Scale Text Classification Using Scope-Based Convolutional Neural Network: A Deep Learning Approach" @default.
- W2990129687 cites W1826790618 @default.
- W2990129687 cites W1832693441 @default.
- W2990129687 cites W2034170092 @default.
- W2990129687 cites W2097089247 @default.
- W2990129687 cites W2107827038 @default.
- W2990129687 cites W2119632338 @default.
- W2990129687 cites W2120615054 @default.
- W2990129687 cites W2126165619 @default.
- W2990129687 cites W2250539671 @default.
- W2990129687 cites W2250879510 @default.
- W2990129687 cites W2522720655 @default.
- W2990129687 cites W2565439473 @default.
- W2990129687 cites W2731449405 @default.
- W2990129687 cites W2739852731 @default.
- W2990129687 cites W2740721704 @default.
- W2990129687 cites W2741271950 @default.
- W2990129687 cites W2808133401 @default.
- W2990129687 cites W2912503608 @default.
- W2990129687 cites W2919115771 @default.
- W2990129687 cites W2943193077 @default.
- W2990129687 cites W2962853227 @default.
- W2990129687 cites W2963355447 @default.
- W2990129687 cites W2963626623 @default.
- W2990129687 cites W3102444842 @default.
- W2990129687 doi "https://doi.org/10.1109/access.2019.2955924" @default.
- W2990129687 hasPublicationYear "2019" @default.
- W2990129687 type Work @default.
- W2990129687 sameAs 2990129687 @default.
- W2990129687 citedByCount "19" @default.
- W2990129687 countsByYear W29901296872020 @default.
- W2990129687 countsByYear W29901296872021 @default.
- W2990129687 countsByYear W29901296872022 @default.
- W2990129687 countsByYear W29901296872023 @default.
- W2990129687 crossrefType "journal-article" @default.
- W2990129687 hasAuthorship W2990129687A5037742951 @default.
- W2990129687 hasAuthorship W2990129687A5040162123 @default.
- W2990129687 hasAuthorship W2990129687A5049295023 @default.
- W2990129687 hasAuthorship W2990129687A5051906468 @default.
- W2990129687 hasAuthorship W2990129687A5061568038 @default.
- W2990129687 hasAuthorship W2990129687A5083849025 @default.
- W2990129687 hasBestOaLocation W29901296871 @default.
- W2990129687 hasConcept C108583219 @default.
- W2990129687 hasConcept C119857082 @default.
- W2990129687 hasConcept C154945302 @default.
- W2990129687 hasConcept C199360897 @default.
- W2990129687 hasConcept C205649164 @default.
- W2990129687 hasConcept C2778012447 @default.
- W2990129687 hasConcept C2778755073 @default.
- W2990129687 hasConcept C41008148 @default.
- W2990129687 hasConcept C50644808 @default.
- W2990129687 hasConcept C58640448 @default.
- W2990129687 hasConcept C81363708 @default.
- W2990129687 hasConceptScore W2990129687C108583219 @default.
- W2990129687 hasConceptScore W2990129687C119857082 @default.
- W2990129687 hasConceptScore W2990129687C154945302 @default.
- W2990129687 hasConceptScore W2990129687C199360897 @default.
- W2990129687 hasConceptScore W2990129687C205649164 @default.
- W2990129687 hasConceptScore W2990129687C2778012447 @default.
- W2990129687 hasConceptScore W2990129687C2778755073 @default.
- W2990129687 hasConceptScore W2990129687C41008148 @default.
- W2990129687 hasConceptScore W2990129687C50644808 @default.
- W2990129687 hasConceptScore W2990129687C58640448 @default.
- W2990129687 hasConceptScore W2990129687C81363708 @default.
- W2990129687 hasFunder F4320321001 @default.
- W2990129687 hasFunder F4320323086 @default.
- W2990129687 hasLocation W29901296871 @default.
- W2990129687 hasOpenAccess W2990129687 @default.
- W2990129687 hasPrimaryLocation W29901296871 @default.
- W2990129687 hasRelatedWork W2337926734 @default.
- W2990129687 hasRelatedWork W2731899572 @default.
- W2990129687 hasRelatedWork W2799614062 @default.
- W2990129687 hasRelatedWork W3021430260 @default.
- W2990129687 hasRelatedWork W3133861977 @default.
- W2990129687 hasRelatedWork W3136076031 @default.
- W2990129687 hasRelatedWork W3173182854 @default.
- W2990129687 hasRelatedWork W4200173597 @default.
- W2990129687 hasRelatedWork W4308353688 @default.
- W2990129687 hasRelatedWork W4311257506 @default.
- W2990129687 hasVolume "7" @default.
- W2990129687 isParatext "false" @default.
- W2990129687 isRetracted "false" @default.
- W2990129687 magId "2990129687" @default.
- W2990129687 workType "article" @default.