Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990145103> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2990145103 endingPage "667" @default.
- W2990145103 startingPage "662" @default.
- W2990145103 abstract "Cancer is the most fatal cause of death and determination of the reasons, making early diagnosis and correct treatment reduces the loss of lives but humans are still far away to produce a complete and permanent solutions to this problem. Nowadays, RNA and gene researches try make this solutions step by step more effective to defect cancer and to improve these researches. However, the number of the genes and complexity of the data makes analysis and experiments more challenging for humans thus, computerized solutions such as machine learning models are needed. This paper presents preliminary results of five types of tumor classification on RNA-Seq. Three machine learning models, Support Vector Machine, Backpropagation neural network and Decision Tree is implemented and various experiments are performed for this task. Obtained results show that machine learning models can effectively be used for tumor classification using gene information and Support Vector Machine achieved superior results than other considered models." @default.
- W2990145103 created "2019-12-05" @default.
- W2990145103 creator A5008997250 @default.
- W2990145103 creator A5076880264 @default.
- W2990145103 date "2019-11-20" @default.
- W2990145103 modified "2023-09-27" @default.
- W2990145103 title "Tumor Classification Using Gene Expression and Machine Learning Models" @default.
- W2990145103 cites W1988488614 @default.
- W2990145103 cites W2143323825 @default.
- W2990145103 cites W2158485828 @default.
- W2990145103 cites W2491732742 @default.
- W2990145103 cites W2514510339 @default.
- W2990145103 cites W2566743738 @default.
- W2990145103 cites W2576591835 @default.
- W2990145103 cites W2895084243 @default.
- W2990145103 doi "https://doi.org/10.1007/978-3-030-35249-3_85" @default.
- W2990145103 hasPublicationYear "2019" @default.
- W2990145103 type Work @default.
- W2990145103 sameAs 2990145103 @default.
- W2990145103 citedByCount "1" @default.
- W2990145103 countsByYear W29901451032022 @default.
- W2990145103 crossrefType "book-chapter" @default.
- W2990145103 hasAuthorship W2990145103A5008997250 @default.
- W2990145103 hasAuthorship W2990145103A5076880264 @default.
- W2990145103 hasConcept C119857082 @default.
- W2990145103 hasConcept C12267149 @default.
- W2990145103 hasConcept C127413603 @default.
- W2990145103 hasConcept C154945302 @default.
- W2990145103 hasConcept C155032097 @default.
- W2990145103 hasConcept C201995342 @default.
- W2990145103 hasConcept C2780451532 @default.
- W2990145103 hasConcept C41008148 @default.
- W2990145103 hasConcept C50644808 @default.
- W2990145103 hasConcept C84525736 @default.
- W2990145103 hasConceptScore W2990145103C119857082 @default.
- W2990145103 hasConceptScore W2990145103C12267149 @default.
- W2990145103 hasConceptScore W2990145103C127413603 @default.
- W2990145103 hasConceptScore W2990145103C154945302 @default.
- W2990145103 hasConceptScore W2990145103C155032097 @default.
- W2990145103 hasConceptScore W2990145103C201995342 @default.
- W2990145103 hasConceptScore W2990145103C2780451532 @default.
- W2990145103 hasConceptScore W2990145103C41008148 @default.
- W2990145103 hasConceptScore W2990145103C50644808 @default.
- W2990145103 hasConceptScore W2990145103C84525736 @default.
- W2990145103 hasLocation W29901451031 @default.
- W2990145103 hasOpenAccess W2990145103 @default.
- W2990145103 hasPrimaryLocation W29901451031 @default.
- W2990145103 hasRelatedWork W2415731916 @default.
- W2990145103 hasRelatedWork W2765889516 @default.
- W2990145103 hasRelatedWork W2961085424 @default.
- W2990145103 hasRelatedWork W3046775127 @default.
- W2990145103 hasRelatedWork W3107474891 @default.
- W2990145103 hasRelatedWork W3136151093 @default.
- W2990145103 hasRelatedWork W4205958290 @default.
- W2990145103 hasRelatedWork W4283077296 @default.
- W2990145103 hasRelatedWork W4286629047 @default.
- W2990145103 hasRelatedWork W4224009465 @default.
- W2990145103 isParatext "false" @default.
- W2990145103 isRetracted "false" @default.
- W2990145103 magId "2990145103" @default.
- W2990145103 workType "book-chapter" @default.