Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990156802> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2990156802 endingPage "2708" @default.
- W2990156802 startingPage "2693" @default.
- W2990156802 abstract "Relation Extraction (RE) aims at harvesting relational facts from texts. A majority of existing research targets at knowledge acquisition from sentences, where subject-verb-object structures are usually treated as the signals of existence of relations. In contrast, relational facts expressed within noun phrases are highly implicit. Previous works mostly relies on human-compiled assertions and textual patterns in English to address noun phrase-based RE. For Chinese, the corresponding task is non-trivial because Chinese is a highly analytic language with flexible expressions. Additionally, noun phrases tend to be incomplete in grammatical structures, where clear mentions of predicates are often missing. In this article, we present an unsupervised Noun Phrase-based Open RE system for the Chinese language (NPORE), which employs a three-layer data-driven architecture. The system contains three components, i.e., Modifier-sensitive Phrase Segmenter, Candidate Relation Generator and Missing Relation Predicate Detector. It integrates with a graph clique mining algorithm to chunk Chinese noun phrases, considering how relations are expressed. We further propose a probabilistic method with knowledge priors and a hypergraph-based random walk process to detect missing relation predicates. Experiments over Chinese Wikipedia show NPORE outperforms state-of-the-art, capable of extracting 55.2 percent more relations than the most competitive baseline, with a comparable precision at 95.4 percent." @default.
- W2990156802 created "2019-12-05" @default.
- W2990156802 creator A5005503474 @default.
- W2990156802 creator A5016717153 @default.
- W2990156802 creator A5034474990 @default.
- W2990156802 date "2021-06-01" @default.
- W2990156802 modified "2023-09-26" @default.
- W2990156802 title "Open Relation Extraction for Chinese Noun Phrases" @default.
- W2990156802 cites W2022166150 @default.
- W2990156802 cites W2078797727 @default.
- W2990156802 cites W2083897630 @default.
- W2990156802 cites W2107658650 @default.
- W2990156802 cites W2122865749 @default.
- W2990156802 cites W2136542423 @default.
- W2990156802 cites W2138605095 @default.
- W2990156802 cites W2152135319 @default.
- W2990156802 cites W2159750428 @default.
- W2990156802 cites W2168565044 @default.
- W2990156802 cites W2250332520 @default.
- W2990156802 cites W2293321142 @default.
- W2990156802 cites W22977213 @default.
- W2990156802 cites W2508425840 @default.
- W2990156802 cites W2509043545 @default.
- W2990156802 cites W2539469848 @default.
- W2990156802 cites W2584630532 @default.
- W2990156802 cites W2739709728 @default.
- W2990156802 cites W2739722817 @default.
- W2990156802 cites W2756495662 @default.
- W2990156802 cites W2757101400 @default.
- W2990156802 cites W2760204057 @default.
- W2990156802 cites W2785631370 @default.
- W2990156802 cites W2798576631 @default.
- W2990156802 cites W2799907313 @default.
- W2990156802 cites W2807789532 @default.
- W2990156802 cites W2809189384 @default.
- W2990156802 cites W2885207695 @default.
- W2990156802 cites W2889439343 @default.
- W2990156802 cites W2897509371 @default.
- W2990156802 cites W2948271276 @default.
- W2990156802 cites W2963043498 @default.
- W2990156802 cites W2963355640 @default.
- W2990156802 cites W2963655104 @default.
- W2990156802 cites W2964022985 @default.
- W2990156802 cites W2964165264 @default.
- W2990156802 cites W2566302710 @default.
- W2990156802 doi "https://doi.org/10.1109/tkde.2019.2953839" @default.
- W2990156802 hasPublicationYear "2021" @default.
- W2990156802 type Work @default.
- W2990156802 sameAs 2990156802 @default.
- W2990156802 citedByCount "8" @default.
- W2990156802 countsByYear W29901568022020 @default.
- W2990156802 countsByYear W29901568022021 @default.
- W2990156802 countsByYear W29901568022022 @default.
- W2990156802 countsByYear W29901568022023 @default.
- W2990156802 crossrefType "journal-article" @default.
- W2990156802 hasAuthorship W2990156802A5005503474 @default.
- W2990156802 hasAuthorship W2990156802A5016717153 @default.
- W2990156802 hasAuthorship W2990156802A5034474990 @default.
- W2990156802 hasConcept C121934690 @default.
- W2990156802 hasConcept C140146324 @default.
- W2990156802 hasConcept C153962237 @default.
- W2990156802 hasConcept C154945302 @default.
- W2990156802 hasConcept C199360897 @default.
- W2990156802 hasConcept C204321447 @default.
- W2990156802 hasConcept C41008148 @default.
- W2990156802 hasConceptScore W2990156802C121934690 @default.
- W2990156802 hasConceptScore W2990156802C140146324 @default.
- W2990156802 hasConceptScore W2990156802C153962237 @default.
- W2990156802 hasConceptScore W2990156802C154945302 @default.
- W2990156802 hasConceptScore W2990156802C199360897 @default.
- W2990156802 hasConceptScore W2990156802C204321447 @default.
- W2990156802 hasConceptScore W2990156802C41008148 @default.
- W2990156802 hasFunder F4320335777 @default.
- W2990156802 hasIssue "6" @default.
- W2990156802 hasLocation W29901568021 @default.
- W2990156802 hasOpenAccess W2990156802 @default.
- W2990156802 hasPrimaryLocation W29901568021 @default.
- W2990156802 hasRelatedWork W1520881844 @default.
- W2990156802 hasRelatedWork W2082329078 @default.
- W2990156802 hasRelatedWork W2251603441 @default.
- W2990156802 hasRelatedWork W2283087796 @default.
- W2990156802 hasRelatedWork W2379635044 @default.
- W2990156802 hasRelatedWork W2386490161 @default.
- W2990156802 hasRelatedWork W2760213228 @default.
- W2990156802 hasRelatedWork W2806411944 @default.
- W2990156802 hasRelatedWork W3107474891 @default.
- W2990156802 hasRelatedWork W3189140819 @default.
- W2990156802 hasVolume "33" @default.
- W2990156802 isParatext "false" @default.
- W2990156802 isRetracted "false" @default.
- W2990156802 magId "2990156802" @default.
- W2990156802 workType "article" @default.