Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990157908> ?p ?o ?g. }
- W2990157908 endingPage "298" @default.
- W2990157908 startingPage "273" @default.
- W2990157908 abstract "Macular edema induced by the accumulation of fluid is associated with the most vision-threatening retinal diseases. Optical coherence tomography (OCT) has become the de facto standard of care in assessing retinal fluid and image-guided treatment management. Deep learning has made an impact across medical image analysis domains and many effective retinal OCT analysis methods have been proposed. This chapter summarizes recent work and provides an overview of the state of the art of machine and deep learning algorithms for detecting and segmenting retinal fluid on OCT. We also demonstrate the benefits such automated methods bring in the form of two clinically relevant applications that are enabled by having retinal fluid accurately quantified." @default.
- W2990157908 created "2019-12-05" @default.
- W2990157908 creator A5013612641 @default.
- W2990157908 creator A5053563726 @default.
- W2990157908 creator A5080653418 @default.
- W2990157908 creator A5089575197 @default.
- W2990157908 date "2019-01-01" @default.
- W2990157908 modified "2023-09-24" @default.
- W2990157908 title "OCT fluid detection and quantification" @default.
- W2990157908 cites W1458919156 @default.
- W2990157908 cites W1951724000 @default.
- W2990157908 cites W1965018345 @default.
- W2990157908 cites W1978478291 @default.
- W2990157908 cites W1979102712 @default.
- W2990157908 cites W1990889412 @default.
- W2990157908 cites W1995086395 @default.
- W2990157908 cites W2013754472 @default.
- W2990157908 cites W2019655958 @default.
- W2990157908 cites W2044944204 @default.
- W2990157908 cites W2060444352 @default.
- W2990157908 cites W2072086181 @default.
- W2990157908 cites W2074575505 @default.
- W2990157908 cites W2074598933 @default.
- W2990157908 cites W2082246284 @default.
- W2990157908 cites W2087681061 @default.
- W2990157908 cites W2100756624 @default.
- W2990157908 cites W2117539524 @default.
- W2990157908 cites W2122333898 @default.
- W2990157908 cites W2127318120 @default.
- W2990157908 cites W2129259959 @default.
- W2990157908 cites W2157291679 @default.
- W2990157908 cites W2170895371 @default.
- W2990157908 cites W2192471031 @default.
- W2990157908 cites W2304396421 @default.
- W2990157908 cites W2319638030 @default.
- W2990157908 cites W2346873848 @default.
- W2990157908 cites W2399141010 @default.
- W2990157908 cites W2474279305 @default.
- W2990157908 cites W2480705741 @default.
- W2990157908 cites W2549799826 @default.
- W2990157908 cites W2587590794 @default.
- W2990157908 cites W2589074029 @default.
- W2990157908 cites W2589435368 @default.
- W2990157908 cites W2592517646 @default.
- W2990157908 cites W2606000143 @default.
- W2990157908 cites W2606534623 @default.
- W2990157908 cites W2608603966 @default.
- W2990157908 cites W2608854843 @default.
- W2990157908 cites W2610584259 @default.
- W2990157908 cites W2613186415 @default.
- W2990157908 cites W2621101817 @default.
- W2990157908 cites W2625039771 @default.
- W2990157908 cites W2734118236 @default.
- W2990157908 cites W2738980709 @default.
- W2990157908 cites W2745385871 @default.
- W2990157908 cites W2753922518 @default.
- W2990157908 cites W2767404384 @default.
- W2990157908 cites W2768217608 @default.
- W2990157908 cites W2772059204 @default.
- W2990157908 cites W2788633781 @default.
- W2990157908 cites W2792836735 @default.
- W2990157908 cites W2891158847 @default.
- W2990157908 cites W2919070891 @default.
- W2990157908 cites W2949122205 @default.
- W2990157908 cites W2962914239 @default.
- W2990157908 cites W2963881378 @default.
- W2990157908 cites W3106336869 @default.
- W2990157908 doi "https://doi.org/10.1016/b978-0-08-102816-2.00015-0" @default.
- W2990157908 hasPublicationYear "2019" @default.
- W2990157908 type Work @default.
- W2990157908 sameAs 2990157908 @default.
- W2990157908 citedByCount "1" @default.
- W2990157908 countsByYear W29901579082022 @default.
- W2990157908 crossrefType "book-chapter" @default.
- W2990157908 hasAuthorship W2990157908A5013612641 @default.
- W2990157908 hasAuthorship W2990157908A5053563726 @default.
- W2990157908 hasAuthorship W2990157908A5080653418 @default.
- W2990157908 hasAuthorship W2990157908A5089575197 @default.
- W2990157908 hasConcept C108583219 @default.
- W2990157908 hasConcept C118487528 @default.
- W2990157908 hasConcept C119767625 @default.
- W2990157908 hasConcept C154945302 @default.
- W2990157908 hasConcept C17744445 @default.
- W2990157908 hasConcept C199539241 @default.
- W2990157908 hasConcept C2778818243 @default.
- W2990157908 hasConcept C2780827179 @default.
- W2990157908 hasConcept C2992317946 @default.
- W2990157908 hasConcept C41008148 @default.
- W2990157908 hasConcept C71924100 @default.
- W2990157908 hasConceptScore W2990157908C108583219 @default.
- W2990157908 hasConceptScore W2990157908C118487528 @default.
- W2990157908 hasConceptScore W2990157908C119767625 @default.
- W2990157908 hasConceptScore W2990157908C154945302 @default.
- W2990157908 hasConceptScore W2990157908C17744445 @default.
- W2990157908 hasConceptScore W2990157908C199539241 @default.
- W2990157908 hasConceptScore W2990157908C2778818243 @default.
- W2990157908 hasConceptScore W2990157908C2780827179 @default.
- W2990157908 hasConceptScore W2990157908C2992317946 @default.