Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990162903> ?p ?o ?g. }
- W2990162903 endingPage "4480" @default.
- W2990162903 startingPage "4469" @default.
- W2990162903 abstract "Combining a high-spatial-resolution multispectral image (HR-MSI) with a low-spatial-resolution hyperspectral image (LR-HSI) has become a common way to enhance the spatial resolution of the HSI. The existing state-of-the-art LR-HSI and HR-MSI fusion methods are mostly based on the matrix factorization, where the matrix data representation may be hard to fully make use of the inherent structures of 3-D HSI. We propose a nonlocal sparse tensor factorization approach, called the NLSTF_SMBF, for the semiblind fusion of HSI and MSI. The proposed method decomposes the HSI into smaller full-band patches (FBPs), which, in turn, are factored as dictionaries of the three HSI modes and a sparse core tensor. This decomposition allows to solve the fusion problem as estimating a sparse core tensor and three dictionaries for each FBP. Similar FBPs are clustered together, and they are assumed to share the same dictionaries to make use of the nonlocal self-similarities of the HSI. For each group, we learn the dictionaries from the observed HR-MSI and LR-HSI. The corresponding sparse core tensor of each FBP is computed via tensor sparse coding. Two distinctive features of NLSTF_SMBF are that: 1) it is blind with respect to the point spread function (PSF) of the hyperspectral sensor and 2) it copes with spatially variant PSFs. The experimental results provide the evidence of the advantages of the NLSTF_SMBF method over the existing state-of-the-art methods, namely, in semiblind scenarios." @default.
- W2990162903 created "2019-12-05" @default.
- W2990162903 creator A5017508063 @default.
- W2990162903 creator A5026156663 @default.
- W2990162903 creator A5065061505 @default.
- W2990162903 creator A5067097659 @default.
- W2990162903 creator A5091601010 @default.
- W2990162903 date "2020-10-01" @default.
- W2990162903 modified "2023-10-16" @default.
- W2990162903 title "Nonlocal Sparse Tensor Factorization for Semiblind Hyperspectral and Multispectral Image Fusion" @default.
- W2990162903 cites W1593447321 @default.
- W2990162903 cites W1799946925 @default.
- W2990162903 cites W1916874600 @default.
- W2990162903 cites W1963826206 @default.
- W2990162903 cites W1990231296 @default.
- W2990162903 cites W2021046129 @default.
- W2990162903 cites W2024165284 @default.
- W2990162903 cites W2030270830 @default.
- W2990162903 cites W2040349808 @default.
- W2990162903 cites W2046904217 @default.
- W2990162903 cites W2053081714 @default.
- W2990162903 cites W2066792693 @default.
- W2990162903 cites W2079598971 @default.
- W2990162903 cites W2087263574 @default.
- W2990162903 cites W2092116045 @default.
- W2990162903 cites W2095906131 @default.
- W2990162903 cites W2097259623 @default.
- W2990162903 cites W2100109944 @default.
- W2990162903 cites W2103192805 @default.
- W2990162903 cites W2125298866 @default.
- W2990162903 cites W2130835014 @default.
- W2990162903 cites W2157321686 @default.
- W2990162903 cites W2159269332 @default.
- W2990162903 cites W2162842940 @default.
- W2990162903 cites W2221899823 @default.
- W2990162903 cites W2327302159 @default.
- W2990162903 cites W2417947228 @default.
- W2990162903 cites W2466393651 @default.
- W2990162903 cites W2473060082 @default.
- W2990162903 cites W2504837581 @default.
- W2990162903 cites W2518815253 @default.
- W2990162903 cites W2536599074 @default.
- W2990162903 cites W2748530166 @default.
- W2990162903 cites W2792111852 @default.
- W2990162903 cites W2804744787 @default.
- W2990162903 cites W2884159946 @default.
- W2990162903 cites W2890206502 @default.
- W2990162903 cites W2910457605 @default.
- W2990162903 cites W2911912801 @default.
- W2990162903 cites W2912145285 @default.
- W2990162903 cites W2919868964 @default.
- W2990162903 cites W2945202593 @default.
- W2990162903 cites W4292363360 @default.
- W2990162903 cites W792141054 @default.
- W2990162903 doi "https://doi.org/10.1109/tcyb.2019.2951572" @default.
- W2990162903 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31794410" @default.
- W2990162903 hasPublicationYear "2020" @default.
- W2990162903 type Work @default.
- W2990162903 sameAs 2990162903 @default.
- W2990162903 citedByCount "89" @default.
- W2990162903 countsByYear W29901629032020 @default.
- W2990162903 countsByYear W29901629032021 @default.
- W2990162903 countsByYear W29901629032022 @default.
- W2990162903 countsByYear W29901629032023 @default.
- W2990162903 crossrefType "journal-article" @default.
- W2990162903 hasAuthorship W2990162903A5017508063 @default.
- W2990162903 hasAuthorship W2990162903A5026156663 @default.
- W2990162903 hasAuthorship W2990162903A5065061505 @default.
- W2990162903 hasAuthorship W2990162903A5067097659 @default.
- W2990162903 hasAuthorship W2990162903A5091601010 @default.
- W2990162903 hasConcept C11413529 @default.
- W2990162903 hasConcept C115961682 @default.
- W2990162903 hasConcept C121332964 @default.
- W2990162903 hasConcept C124066611 @default.
- W2990162903 hasConcept C153180895 @default.
- W2990162903 hasConcept C154945302 @default.
- W2990162903 hasConcept C155281189 @default.
- W2990162903 hasConcept C158693339 @default.
- W2990162903 hasConcept C159078339 @default.
- W2990162903 hasConcept C173163844 @default.
- W2990162903 hasConcept C187834632 @default.
- W2990162903 hasConcept C202444582 @default.
- W2990162903 hasConcept C2986737658 @default.
- W2990162903 hasConcept C33923547 @default.
- W2990162903 hasConcept C41008148 @default.
- W2990162903 hasConcept C42355184 @default.
- W2990162903 hasConcept C62520636 @default.
- W2990162903 hasConcept C69744172 @default.
- W2990162903 hasConceptScore W2990162903C11413529 @default.
- W2990162903 hasConceptScore W2990162903C115961682 @default.
- W2990162903 hasConceptScore W2990162903C121332964 @default.
- W2990162903 hasConceptScore W2990162903C124066611 @default.
- W2990162903 hasConceptScore W2990162903C153180895 @default.
- W2990162903 hasConceptScore W2990162903C154945302 @default.
- W2990162903 hasConceptScore W2990162903C155281189 @default.
- W2990162903 hasConceptScore W2990162903C158693339 @default.
- W2990162903 hasConceptScore W2990162903C159078339 @default.
- W2990162903 hasConceptScore W2990162903C173163844 @default.