Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990179723> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2990179723 abstract "Character relationship information is important for precision poverty alleviation. The main challenge is that the character relation data is heterogeneous and relation words are implicit in text short sentences. Therefore, we propose a method of character relationship mining based on the combination of knowledge graph and deep learning. The DNN and BiGRU neural network joint method are proposed to recognize person named entities and extract character relations. The character relation triples data are stored in the Neo4j graph database, and the deeper information is mined by using the multi-depth relation query method. The experimental results on the poverty alleviation data show that the best accuracy of relation extraction can reach 84.9%, and the query efficiency of character relationship is improved. Users could quickly view the implied character relationships through the graph." @default.
- W2990179723 created "2019-12-05" @default.
- W2990179723 creator A5086358231 @default.
- W2990179723 creator A5087405013 @default.
- W2990179723 creator A5089935151 @default.
- W2990179723 date "2019-08-01" @default.
- W2990179723 modified "2023-10-16" @default.
- W2990179723 title "The Character Relationship Mining Based on Knowledge Graph and Deep Learning" @default.
- W2990179723 cites W179875071 @default.
- W2990179723 cites W1924770834 @default.
- W2990179723 cites W1986503903 @default.
- W2990179723 cites W1991649162 @default.
- W2990179723 cites W2019038239 @default.
- W2990179723 cites W2020954089 @default.
- W2990179723 cites W2079333153 @default.
- W2990179723 cites W2108211831 @default.
- W2990179723 cites W2132038179 @default.
- W2990179723 cites W2140103187 @default.
- W2990179723 cites W2158899491 @default.
- W2990179723 cites W2160451571 @default.
- W2990179723 cites W2255466643 @default.
- W2990179723 cites W2262907013 @default.
- W2990179723 cites W2265846598 @default.
- W2990179723 cites W2293023260 @default.
- W2990179723 cites W2470673105 @default.
- W2990179723 cites W2507373853 @default.
- W2990179723 cites W2517194566 @default.
- W2990179723 cites W2523190165 @default.
- W2990179723 cites W2787318412 @default.
- W2990179723 cites W2963012544 @default.
- W2990179723 cites W2963963856 @default.
- W2990179723 cites W2964217331 @default.
- W2990179723 doi "https://doi.org/10.1109/bigcom.2019.00011" @default.
- W2990179723 hasPublicationYear "2019" @default.
- W2990179723 type Work @default.
- W2990179723 sameAs 2990179723 @default.
- W2990179723 citedByCount "1" @default.
- W2990179723 countsByYear W29901797232021 @default.
- W2990179723 crossrefType "proceedings-article" @default.
- W2990179723 hasAuthorship W2990179723A5086358231 @default.
- W2990179723 hasAuthorship W2990179723A5087405013 @default.
- W2990179723 hasAuthorship W2990179723A5089935151 @default.
- W2990179723 hasConcept C119857082 @default.
- W2990179723 hasConcept C124101348 @default.
- W2990179723 hasConcept C132525143 @default.
- W2990179723 hasConcept C153604712 @default.
- W2990179723 hasConcept C154945302 @default.
- W2990179723 hasConcept C204321447 @default.
- W2990179723 hasConcept C2524010 @default.
- W2990179723 hasConcept C25343380 @default.
- W2990179723 hasConcept C2780861071 @default.
- W2990179723 hasConcept C33923547 @default.
- W2990179723 hasConcept C41008148 @default.
- W2990179723 hasConcept C50644808 @default.
- W2990179723 hasConcept C80444323 @default.
- W2990179723 hasConceptScore W2990179723C119857082 @default.
- W2990179723 hasConceptScore W2990179723C124101348 @default.
- W2990179723 hasConceptScore W2990179723C132525143 @default.
- W2990179723 hasConceptScore W2990179723C153604712 @default.
- W2990179723 hasConceptScore W2990179723C154945302 @default.
- W2990179723 hasConceptScore W2990179723C204321447 @default.
- W2990179723 hasConceptScore W2990179723C2524010 @default.
- W2990179723 hasConceptScore W2990179723C25343380 @default.
- W2990179723 hasConceptScore W2990179723C2780861071 @default.
- W2990179723 hasConceptScore W2990179723C33923547 @default.
- W2990179723 hasConceptScore W2990179723C41008148 @default.
- W2990179723 hasConceptScore W2990179723C50644808 @default.
- W2990179723 hasConceptScore W2990179723C80444323 @default.
- W2990179723 hasLocation W29901797231 @default.
- W2990179723 hasOpenAccess W2990179723 @default.
- W2990179723 hasPrimaryLocation W29901797231 @default.
- W2990179723 hasRelatedWork W2766478297 @default.
- W2990179723 hasRelatedWork W2803609569 @default.
- W2990179723 hasRelatedWork W2960538829 @default.
- W2990179723 hasRelatedWork W2976808399 @default.
- W2990179723 hasRelatedWork W3036683340 @default.
- W2990179723 hasRelatedWork W3044619194 @default.
- W2990179723 hasRelatedWork W3048941492 @default.
- W2990179723 hasRelatedWork W3116645343 @default.
- W2990179723 hasRelatedWork W3118018449 @default.
- W2990179723 hasRelatedWork W3122822969 @default.
- W2990179723 hasRelatedWork W3136332380 @default.
- W2990179723 hasRelatedWork W3160844635 @default.
- W2990179723 hasRelatedWork W3173647480 @default.
- W2990179723 hasRelatedWork W3175147232 @default.
- W2990179723 hasRelatedWork W3177599311 @default.
- W2990179723 hasRelatedWork W3195526979 @default.
- W2990179723 hasRelatedWork W3204131821 @default.
- W2990179723 hasRelatedWork W3208789749 @default.
- W2990179723 hasRelatedWork W3089876042 @default.
- W2990179723 hasRelatedWork W3138101086 @default.
- W2990179723 isParatext "false" @default.
- W2990179723 isRetracted "false" @default.
- W2990179723 magId "2990179723" @default.
- W2990179723 workType "article" @default.