Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990291356> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2990291356 abstract "The noteworthy advances in biotechnology and biomedical sciences have prompted a huge creation of information, for example, high throughput genetic information and clinical data, produced from extensive Electronic Health Records. To this end, utilization of machine learning and data mining techniques in biosciences is by and by crucial and fundamental in endeavors to change cleverly all accessible data into profitable knowledge. Diabetes mellitus is characterized as a gathering of metabolic issue applying critical weight on human health around the world. Broad research in all parts of diabetes (determination, pathophysiology, treatment, and so forth.) has prompted the age of tremendous measures of information. The point of the present examination is to direct an orderly audit of the uses of machine-learning, data mining strategies and instruments in the field of diabetes. The main theme of this work is to provide a system which can prognosticate the diabetes in patients with better accuracy. Here, eleven well-known machine-learning algorithms like Naïve Bayes, K-NN, SVM, Random Forest, Artificial Neural Network, Logistic Regression, Gradient Boosting, Ada Boosting etc. are used for detection of diabetes at an early stage. The evaluations of all the eleven algorithms are examined on various parameters like accuracy, precision, F-measure and recall. After cross-validation and hyper-tuning, the best three machine-learning algorithms are determined and then used in Ensemble Voting Classifier. The experimental results affirm that the pointed framework can accomplish to outstanding outcome of almost 86% accuracy of the Pima Indians Diabetes Database." @default.
- W2990291356 created "2019-12-05" @default.
- W2990291356 creator A5031016069 @default.
- W2990291356 date "2019-11-25" @default.
- W2990291356 modified "2023-09-23" @default.
- W2990291356 title "A robust voting approach for diabetes prediction using traditional machine learning techniques" @default.
- W2990291356 cites W2111022379 @default.
- W2990291356 cites W2198899446 @default.
- W2990291356 cites W2204950599 @default.
- W2990291356 cites W2379581788 @default.
- W2990291356 cites W2394922069 @default.
- W2990291356 cites W2443862987 @default.
- W2990291356 cites W2478540874 @default.
- W2990291356 cites W2569214105 @default.
- W2990291356 cites W2581465409 @default.
- W2990291356 cites W2663601144 @default.
- W2990291356 cites W2752627726 @default.
- W2990291356 cites W2762153450 @default.
- W2990291356 cites W2798421489 @default.
- W2990291356 cites W2801733548 @default.
- W2990291356 cites W2807027008 @default.
- W2990291356 cites W2899963038 @default.
- W2990291356 cites W2921196390 @default.
- W2990291356 cites W2922357437 @default.
- W2990291356 cites W4251957691 @default.
- W2990291356 doi "https://doi.org/10.1007/s42452-019-1759-7" @default.
- W2990291356 hasPublicationYear "2019" @default.
- W2990291356 type Work @default.
- W2990291356 sameAs 2990291356 @default.
- W2990291356 citedByCount "19" @default.
- W2990291356 countsByYear W29902913562020 @default.
- W2990291356 countsByYear W29902913562021 @default.
- W2990291356 countsByYear W29902913562022 @default.
- W2990291356 countsByYear W29902913562023 @default.
- W2990291356 crossrefType "journal-article" @default.
- W2990291356 hasAuthorship W2990291356A5031016069 @default.
- W2990291356 hasBestOaLocation W29902913561 @default.
- W2990291356 hasConcept C119857082 @default.
- W2990291356 hasConcept C12267149 @default.
- W2990291356 hasConcept C124101348 @default.
- W2990291356 hasConcept C154945302 @default.
- W2990291356 hasConcept C169258074 @default.
- W2990291356 hasConcept C17744445 @default.
- W2990291356 hasConcept C199539241 @default.
- W2990291356 hasConcept C41008148 @default.
- W2990291356 hasConcept C46686674 @default.
- W2990291356 hasConcept C50644808 @default.
- W2990291356 hasConcept C52001869 @default.
- W2990291356 hasConcept C520049643 @default.
- W2990291356 hasConcept C94625758 @default.
- W2990291356 hasConcept C95623464 @default.
- W2990291356 hasConceptScore W2990291356C119857082 @default.
- W2990291356 hasConceptScore W2990291356C12267149 @default.
- W2990291356 hasConceptScore W2990291356C124101348 @default.
- W2990291356 hasConceptScore W2990291356C154945302 @default.
- W2990291356 hasConceptScore W2990291356C169258074 @default.
- W2990291356 hasConceptScore W2990291356C17744445 @default.
- W2990291356 hasConceptScore W2990291356C199539241 @default.
- W2990291356 hasConceptScore W2990291356C41008148 @default.
- W2990291356 hasConceptScore W2990291356C46686674 @default.
- W2990291356 hasConceptScore W2990291356C50644808 @default.
- W2990291356 hasConceptScore W2990291356C52001869 @default.
- W2990291356 hasConceptScore W2990291356C520049643 @default.
- W2990291356 hasConceptScore W2990291356C94625758 @default.
- W2990291356 hasConceptScore W2990291356C95623464 @default.
- W2990291356 hasIssue "12" @default.
- W2990291356 hasLocation W29902913561 @default.
- W2990291356 hasOpenAccess W2990291356 @default.
- W2990291356 hasPrimaryLocation W29902913561 @default.
- W2990291356 hasRelatedWork W1996541855 @default.
- W2990291356 hasRelatedWork W2985924212 @default.
- W2990291356 hasRelatedWork W3108448481 @default.
- W2990291356 hasRelatedWork W3168635777 @default.
- W2990291356 hasRelatedWork W3168994312 @default.
- W2990291356 hasRelatedWork W3195168932 @default.
- W2990291356 hasRelatedWork W4221021152 @default.
- W2990291356 hasRelatedWork W4319718059 @default.
- W2990291356 hasRelatedWork W4377964522 @default.
- W2990291356 hasRelatedWork W4384345534 @default.
- W2990291356 hasVolume "1" @default.
- W2990291356 isParatext "false" @default.
- W2990291356 isRetracted "false" @default.
- W2990291356 magId "2990291356" @default.
- W2990291356 workType "article" @default.