Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990331389> ?p ?o ?g. }
- W2990331389 endingPage "171451" @default.
- W2990331389 startingPage "171431" @default.
- W2990331389 abstract "The robustness and computational load are the key challenges in motor imagery (MI) based on electroencephalography (EEG) signals to decode for the development of practical brain-computer interface (BCI) systems. In this study, we propose a robust and simple automated multivariate empirical wavelet transform (MEWT) algorithm for the decoding of different MI tasks. The main contributions of this study are four-fold. First, the multiscale principal component analysis method is utilized in the preprocessing module to obtain robustness against noise. Second, a novel automated channel selection strategy is proposed and then is further verified with comprehensive comparisons among three different strategies for decoding channel combination selection. Third, a sub-band alignment method by utilizing MEWT is adopted to obtain joint instantaneous amplitude and frequency components for the first time in MI applications. Four, a robust correlation-based feature selection strategy is applied to largely reduce the system complexity and computational load. Extensive experiments for subject-specific and subject independent cases are conducted with the three-benchmark datasets from BCI competition III to evaluate the performances of the proposed method by employing typical machine-learning classifiers. For subject-specific case, experimental results show that an average sensitivity, specificity and classification accuracy of 98% was achieved by employing multilayer perceptron neural networks, logistic model tree and least-square support vector machine (LS-SVM) classifiers, respectively for three datasets, resulting in an improvement of upto 23.50% in classification accuracy as compared with other existing method. While an average sensitivity, specificity and classification accuracy of 93%, 92.1% and 91.4% was achieved for subject independent case by employing LS-SVM classifier for all datasets with an increase of up to 18.14% relative to other existing methods. Results also show that our proposed algorithm provides a classification accuracy of 100% for subjects with small training size in subject-specific case, and for subject independent case by employing a single source subject. Such satisfactory results demonstrate the great potential of the proposed MEWT algorithm for practical MI EEG signals classification." @default.
- W2990331389 created "2019-12-05" @default.
- W2990331389 creator A5005659262 @default.
- W2990331389 creator A5018970859 @default.
- W2990331389 creator A5021062768 @default.
- W2990331389 creator A5030669040 @default.
- W2990331389 creator A5032840064 @default.
- W2990331389 creator A5042119018 @default.
- W2990331389 creator A5050301709 @default.
- W2990331389 creator A5056225848 @default.
- W2990331389 date "2019-01-01" @default.
- W2990331389 modified "2023-10-11" @default.
- W2990331389 title "Motor Imagery EEG Signals Decoding by Multivariate Empirical Wavelet Transform-Based Framework for Robust Brain–Computer Interfaces" @default.
- W2990331389 cites W1860388723 @default.
- W2990331389 cites W1877153489 @default.
- W2990331389 cites W1933988720 @default.
- W2990331389 cites W1946018545 @default.
- W2990331389 cites W1971984816 @default.
- W2990331389 cites W1973412776 @default.
- W2990331389 cites W1975717934 @default.
- W2990331389 cites W1981039744 @default.
- W2990331389 cites W1987551624 @default.
- W2990331389 cites W1996167318 @default.
- W2990331389 cites W2007221293 @default.
- W2990331389 cites W2011484846 @default.
- W2990331389 cites W2012297890 @default.
- W2990331389 cites W2017337590 @default.
- W2990331389 cites W2019900743 @default.
- W2990331389 cites W2021970732 @default.
- W2990331389 cites W2026979147 @default.
- W2990331389 cites W2028124740 @default.
- W2990331389 cites W2054764914 @default.
- W2990331389 cites W2055070433 @default.
- W2990331389 cites W2059231157 @default.
- W2990331389 cites W2060472216 @default.
- W2990331389 cites W2065591343 @default.
- W2990331389 cites W2081700482 @default.
- W2990331389 cites W2087962094 @default.
- W2990331389 cites W2088812805 @default.
- W2990331389 cites W2090158744 @default.
- W2990331389 cites W2093296486 @default.
- W2990331389 cites W2101629643 @default.
- W2990331389 cites W2109858853 @default.
- W2990331389 cites W2115126565 @default.
- W2990331389 cites W2124311300 @default.
- W2990331389 cites W2129023315 @default.
- W2990331389 cites W2147174595 @default.
- W2990331389 cites W2152119085 @default.
- W2990331389 cites W2155617375 @default.
- W2990331389 cites W2156832349 @default.
- W2990331389 cites W2158397443 @default.
- W2990331389 cites W2160634130 @default.
- W2990331389 cites W2171872429 @default.
- W2990331389 cites W2256611813 @default.
- W2990331389 cites W2279986631 @default.
- W2990331389 cites W2289208053 @default.
- W2990331389 cites W2347201682 @default.
- W2990331389 cites W2461134574 @default.
- W2990331389 cites W2518936540 @default.
- W2990331389 cites W2521878393 @default.
- W2990331389 cites W2568407436 @default.
- W2990331389 cites W2569969175 @default.
- W2990331389 cites W2577361998 @default.
- W2990331389 cites W2587633665 @default.
- W2990331389 cites W2754649950 @default.
- W2990331389 cites W2766309231 @default.
- W2990331389 cites W2766733807 @default.
- W2990331389 cites W2784075164 @default.
- W2990331389 cites W2793841943 @default.
- W2990331389 cites W2794345050 @default.
- W2990331389 cites W2888132296 @default.
- W2990331389 cites W2896031995 @default.
- W2990331389 cites W2908819519 @default.
- W2990331389 cites W2915196348 @default.
- W2990331389 cites W2925329298 @default.
- W2990331389 cites W2951453195 @default.
- W2990331389 cites W2952715783 @default.
- W2990331389 cites W2965743638 @default.
- W2990331389 cites W2971357197 @default.
- W2990331389 cites W2975672594 @default.
- W2990331389 cites W4255272544 @default.
- W2990331389 doi "https://doi.org/10.1109/access.2019.2956018" @default.
- W2990331389 hasPublicationYear "2019" @default.
- W2990331389 type Work @default.
- W2990331389 sameAs 2990331389 @default.
- W2990331389 citedByCount "93" @default.
- W2990331389 countsByYear W29903313892020 @default.
- W2990331389 countsByYear W29903313892021 @default.
- W2990331389 countsByYear W29903313892022 @default.
- W2990331389 countsByYear W29903313892023 @default.
- W2990331389 crossrefType "journal-article" @default.
- W2990331389 hasAuthorship W2990331389A5005659262 @default.
- W2990331389 hasAuthorship W2990331389A5018970859 @default.
- W2990331389 hasAuthorship W2990331389A5021062768 @default.
- W2990331389 hasAuthorship W2990331389A5030669040 @default.
- W2990331389 hasAuthorship W2990331389A5032840064 @default.
- W2990331389 hasAuthorship W2990331389A5042119018 @default.
- W2990331389 hasAuthorship W2990331389A5050301709 @default.