Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990381956> ?p ?o ?g. }
- W2990381956 endingPage "1813" @default.
- W2990381956 startingPage "1807" @default.
- W2990381956 abstract "Recently, it has become feasible to generate large-scale, multi-tissue gene expression data, where expression profiles are obtained from multiple tissues or organs sampled from dozens to hundreds of individuals. When traditional clustering methods are applied to this type of data, important information is lost, because they either require all tissues to be analyzed independently, ignoring dependencies and similarities between tissues, or to merge tissues in a single, monolithic dataset, ignoring individual characteristics of tissues. We developed a Bayesian model-based multi-tissue clustering algorithm, revamp, which can incorporate prior information on physiological tissue similarity, and which results in a set of clusters, each consisting of a core set of genes conserved across tissues as well as differential sets of genes specific to one or more subsets of tissues. Using data from seven vascular and metabolic tissues from over 100 individuals in the STockholm Atherosclerosis Gene Expression (STAGE) study, we demonstrate that multi-tissue clusters inferred by revamp are more enriched for tissue-dependent protein-protein interactions compared to alternative approaches. We further demonstrate that revamp results in easily interpretable multi-tissue gene expression associations to key coronary artery disease processes and clinical phenotypes in the STAGE individuals. Revamp is implemented in the Lemon-Tree software, available at https://github.com/eb00/lemon-tree" @default.
- W2990381956 created "2019-12-05" @default.
- W2990381956 creator A5049099140 @default.
- W2990381956 creator A5061259711 @default.
- W2990381956 creator A5067811406 @default.
- W2990381956 date "2019-11-05" @default.
- W2990381956 modified "2023-10-01" @default.
- W2990381956 title "Model-based clustering of multi-tissue gene expression data" @default.
- W2990381956 cites W107220021 @default.
- W2990381956 cites W1154073429 @default.
- W2990381956 cites W1633660980 @default.
- W2990381956 cites W1968055555 @default.
- W2990381956 cites W1973651601 @default.
- W2990381956 cites W1974033269 @default.
- W2990381956 cites W1982540082 @default.
- W2990381956 cites W1988177920 @default.
- W2990381956 cites W1991645955 @default.
- W2990381956 cites W1996866382 @default.
- W2990381956 cites W2002382034 @default.
- W2990381956 cites W2003263626 @default.
- W2990381956 cites W2004790688 @default.
- W2990381956 cites W2011832962 @default.
- W2990381956 cites W2019232525 @default.
- W2990381956 cites W2019832884 @default.
- W2990381956 cites W2025897051 @default.
- W2990381956 cites W2030813272 @default.
- W2990381956 cites W2056245115 @default.
- W2990381956 cites W2056780622 @default.
- W2990381956 cites W2060137921 @default.
- W2990381956 cites W2071255219 @default.
- W2990381956 cites W2088666810 @default.
- W2990381956 cites W2099388546 @default.
- W2990381956 cites W2102878257 @default.
- W2990381956 cites W2103453943 @default.
- W2990381956 cites W2108191052 @default.
- W2990381956 cites W2112697101 @default.
- W2990381956 cites W2113497923 @default.
- W2990381956 cites W2130818513 @default.
- W2990381956 cites W2134697644 @default.
- W2990381956 cites W2137522673 @default.
- W2990381956 cites W2140247552 @default.
- W2990381956 cites W2140742732 @default.
- W2990381956 cites W2144534316 @default.
- W2990381956 cites W2147654254 @default.
- W2990381956 cites W2148995578 @default.
- W2990381956 cites W2150849085 @default.
- W2990381956 cites W2150926065 @default.
- W2990381956 cites W2152124140 @default.
- W2990381956 cites W2152639592 @default.
- W2990381956 cites W2154354945 @default.
- W2990381956 cites W2155387553 @default.
- W2990381956 cites W2159692236 @default.
- W2990381956 cites W2161503382 @default.
- W2990381956 cites W2161986541 @default.
- W2990381956 cites W2185522313 @default.
- W2990381956 cites W2295388714 @default.
- W2990381956 cites W2322178878 @default.
- W2990381956 cites W2411918438 @default.
- W2990381956 cites W2508591721 @default.
- W2990381956 cites W2548934359 @default.
- W2990381956 cites W2551261660 @default.
- W2990381956 cites W2577490495 @default.
- W2990381956 cites W2599457655 @default.
- W2990381956 cites W2761275051 @default.
- W2990381956 cites W2771059120 @default.
- W2990381956 cites W2951047742 @default.
- W2990381956 cites W2341771971 @default.
- W2990381956 doi "https://doi.org/10.1093/bioinformatics/btz805" @default.
- W2990381956 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7162352" @default.
- W2990381956 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31688915" @default.
- W2990381956 hasPublicationYear "2019" @default.
- W2990381956 type Work @default.
- W2990381956 sameAs 2990381956 @default.
- W2990381956 citedByCount "8" @default.
- W2990381956 countsByYear W29903819562020 @default.
- W2990381956 countsByYear W29903819562021 @default.
- W2990381956 countsByYear W29903819562022 @default.
- W2990381956 countsByYear W29903819562023 @default.
- W2990381956 crossrefType "journal-article" @default.
- W2990381956 hasAuthorship W2990381956A5049099140 @default.
- W2990381956 hasAuthorship W2990381956A5061259711 @default.
- W2990381956 hasAuthorship W2990381956A5067811406 @default.
- W2990381956 hasBestOaLocation W29903819561 @default.
- W2990381956 hasConcept C104317684 @default.
- W2990381956 hasConcept C113174947 @default.
- W2990381956 hasConcept C124101348 @default.
- W2990381956 hasConcept C134306372 @default.
- W2990381956 hasConcept C150194340 @default.
- W2990381956 hasConcept C154945302 @default.
- W2990381956 hasConcept C197129107 @default.
- W2990381956 hasConcept C199360897 @default.
- W2990381956 hasConcept C23123220 @default.
- W2990381956 hasConcept C33923547 @default.
- W2990381956 hasConcept C41008148 @default.
- W2990381956 hasConcept C54355233 @default.
- W2990381956 hasConcept C60644358 @default.
- W2990381956 hasConcept C70721500 @default.
- W2990381956 hasConcept C73555534 @default.