Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990383350> ?p ?o ?g. }
- W2990383350 endingPage "5127" @default.
- W2990383350 startingPage "5127" @default.
- W2990383350 abstract "Rapid and efficient assessment of cultivated land quality (CLQ) using remote sensing technology is of great significance for protecting cultivated land. However, it is difficult to obtain accurate CLQ estimates using the current satellite-driven approaches in the pressure-state-response (PSR) framework, owing to the limitations of linear models and CLQ spectral indices. In order to improve the estimation accuracy of CLQ, this study used four evaluation models (the traditional linear model; partial least squares regression, PLSR; back propagation neural network, BPNN; and BPNN with genetic algorithm optimization, GA-BPNN) to evaluate CLQ for determining the accurate evaluation model. In addition, the optimal satellite-derived indicator in the land state index was selected among five vegetation indices (the normalized vegetation index, NDVI; enhanced vegetation index, EVI; modified soil-adjusted vegetation index, MSAVI; perpendicular vegetation index, PVI; and soil-adjusted vegetation index, SAVI) to improve the prediction accuracy of CLQ. This study was conducted in Conghua District of Guangzhou, Guangdong Province, China, based on Gaofen-1 (GF-1) data. The prediction accuracies from the traditional linear model, PLSR, BPNN, and GA-BPNN were compared using observations. The results demonstrated that (1) compared with other models (the traditional linear model: R2 = 0.14 and RMSE = 91.53; PLSR: R2 = 0.33 and RMSE = 74.58; BPNN: R2 = 0.50 and RMSE = 61.75), the GA-BPNN model based on EVI in the land state index provided the most accurate estimates of CLQ, with the R2 of 0.59 and root mean square error (RMSE) of 56.87, indicating a nonlinear relationship between CLQ and the prediction indicator; and (2) the GA-BPNN-based evaluation approach of CLQ in the PSR framework was driven to map CLQ of the study area using the GF-1 data, leading to an RMSE of 61.44 at the regional scale, implying that the GA-BPNN-based evaluation approach has the potential to map CLQ over large areas. This study provides an important reference for the high-accuracy prediction of CLQ based on remote sensing technology." @default.
- W2990383350 created "2019-12-05" @default.
- W2990383350 creator A5037853055 @default.
- W2990383350 creator A5057571908 @default.
- W2990383350 creator A5062071376 @default.
- W2990383350 creator A5063530068 @default.
- W2990383350 creator A5064408814 @default.
- W2990383350 creator A5086878627 @default.
- W2990383350 creator A5090697733 @default.
- W2990383350 date "2019-11-22" @default.
- W2990383350 modified "2023-10-16" @default.
- W2990383350 title "The GA-BPNN-Based Evaluation of Cultivated Land Quality in the PSR Framework Using Gaofen-1 Satellite Data" @default.
- W2990383350 cites W1522117767 @default.
- W2990383350 cites W1964217023 @default.
- W2990383350 cites W1964273386 @default.
- W2990383350 cites W1971801539 @default.
- W2990383350 cites W1977079996 @default.
- W2990383350 cites W1977154999 @default.
- W2990383350 cites W1983501745 @default.
- W2990383350 cites W1995046498 @default.
- W2990383350 cites W2005927366 @default.
- W2990383350 cites W2025774553 @default.
- W2990383350 cites W2052700773 @default.
- W2990383350 cites W2063077905 @default.
- W2990383350 cites W2068371905 @default.
- W2990383350 cites W2073503722 @default.
- W2990383350 cites W2073857590 @default.
- W2990383350 cites W2087133050 @default.
- W2990383350 cites W2094677081 @default.
- W2990383350 cites W2113720235 @default.
- W2990383350 cites W2126861173 @default.
- W2990383350 cites W2132299303 @default.
- W2990383350 cites W2135798740 @default.
- W2990383350 cites W2159448391 @default.
- W2990383350 cites W2163213012 @default.
- W2990383350 cites W2168537889 @default.
- W2990383350 cites W2253955340 @default.
- W2990383350 cites W2292939562 @default.
- W2990383350 cites W2325595949 @default.
- W2990383350 cites W2461861787 @default.
- W2990383350 cites W2509239855 @default.
- W2990383350 cites W2782072844 @default.
- W2990383350 cites W2883827111 @default.
- W2990383350 cites W2978789560 @default.
- W2990383350 doi "https://doi.org/10.3390/s19235127" @default.
- W2990383350 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6928618" @default.
- W2990383350 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31771107" @default.
- W2990383350 hasPublicationYear "2019" @default.
- W2990383350 type Work @default.
- W2990383350 sameAs 2990383350 @default.
- W2990383350 citedByCount "17" @default.
- W2990383350 countsByYear W29903833502020 @default.
- W2990383350 countsByYear W29903833502021 @default.
- W2990383350 countsByYear W29903833502022 @default.
- W2990383350 countsByYear W29903833502023 @default.
- W2990383350 crossrefType "journal-article" @default.
- W2990383350 hasAuthorship W2990383350A5037853055 @default.
- W2990383350 hasAuthorship W2990383350A5057571908 @default.
- W2990383350 hasAuthorship W2990383350A5062071376 @default.
- W2990383350 hasAuthorship W2990383350A5063530068 @default.
- W2990383350 hasAuthorship W2990383350A5064408814 @default.
- W2990383350 hasAuthorship W2990383350A5086878627 @default.
- W2990383350 hasAuthorship W2990383350A5090697733 @default.
- W2990383350 hasBestOaLocation W29903833501 @default.
- W2990383350 hasConcept C105795698 @default.
- W2990383350 hasConcept C127413603 @default.
- W2990383350 hasConcept C128990827 @default.
- W2990383350 hasConcept C136764020 @default.
- W2990383350 hasConcept C139945424 @default.
- W2990383350 hasConcept C142724271 @default.
- W2990383350 hasConcept C146978453 @default.
- W2990383350 hasConcept C1549246 @default.
- W2990383350 hasConcept C18903297 @default.
- W2990383350 hasConcept C19269812 @default.
- W2990383350 hasConcept C205649164 @default.
- W2990383350 hasConcept C22354355 @default.
- W2990383350 hasConcept C25989453 @default.
- W2990383350 hasConcept C2776133958 @default.
- W2990383350 hasConcept C2777382242 @default.
- W2990383350 hasConcept C2780092901 @default.
- W2990383350 hasConcept C2780376076 @default.
- W2990383350 hasConcept C33923547 @default.
- W2990383350 hasConcept C39432304 @default.
- W2990383350 hasConcept C41008148 @default.
- W2990383350 hasConcept C62649853 @default.
- W2990383350 hasConcept C71924100 @default.
- W2990383350 hasConcept C78869512 @default.
- W2990383350 hasConcept C86803240 @default.
- W2990383350 hasConceptScore W2990383350C105795698 @default.
- W2990383350 hasConceptScore W2990383350C127413603 @default.
- W2990383350 hasConceptScore W2990383350C128990827 @default.
- W2990383350 hasConceptScore W2990383350C136764020 @default.
- W2990383350 hasConceptScore W2990383350C139945424 @default.
- W2990383350 hasConceptScore W2990383350C142724271 @default.
- W2990383350 hasConceptScore W2990383350C146978453 @default.
- W2990383350 hasConceptScore W2990383350C1549246 @default.
- W2990383350 hasConceptScore W2990383350C18903297 @default.
- W2990383350 hasConceptScore W2990383350C19269812 @default.