Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990432905> ?p ?o ?g. }
- W2990432905 endingPage "684" @default.
- W2990432905 startingPage "684" @default.
- W2990432905 abstract "In the last decade, the clinical applications of three-dimensional (3D) printed models, in the neurosurgery field among others, have expanded widely based on several technical improvements in 3D printers, an increased variety of materials, but especially in postprocessing software. More commonly, physical models are obtained from a unique imaging technique with potential utilization in presurgical planning, generation/creation of patient-specific surgical material and personalized prosthesis or implants. Using specific software solutions, it is possible to obtain a more accurate segmentation of different anatomical and pathological structures and a more precise registration between different medical image sources allowing generating hybrid computed tomography (CT) and magnetic resonance imaging (MRI) 3D printed models. The need of neurosurgeons for a better understanding of the complex anatomy of central nervous system (CNS) and spine is pushing the use of these hybrid models, which are able to combine morphological information from CT and MRI, and also able to add physiological data from advanced MRI sequences, such as diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), perfusion weighted imaging (PWI) and functional MRI (fMRI). The inclusion of physiopathological data from advanced MRI sequences enables neurosurgeons to identify those areas with increased biological aggressiveness within a certain lesion prior to surgery or biopsy procedures. Preliminary data support the use of this more accurate presurgical perspective, to select the better surgical approach, reduce the global length of surgery and minimize the rate of intraoperative complications, morbidities or patient recovery times after surgery. The use of 3D printed models in neurosurgery has also demonstrated to be a valid tool for surgeons training and to improve communication between specialists and patients. Further studies are needed to test the feasibility of this novel approach in common clinical practice and determine the degree of improvement the neurosurgeons receive and the potential impact on patient outcome." @default.
- W2990432905 created "2019-12-05" @default.
- W2990432905 creator A5000809249 @default.
- W2990432905 creator A5005842784 @default.
- W2990432905 creator A5011172463 @default.
- W2990432905 creator A5031654386 @default.
- W2990432905 creator A5051424423 @default.
- W2990432905 creator A5052210474 @default.
- W2990432905 date "2019-11-01" @default.
- W2990432905 modified "2023-09-25" @default.
- W2990432905 title "Hybrid computed tomography and magnetic resonance imaging 3D printed models for neurosurgery planning" @default.
- W2990432905 cites W136961725 @default.
- W2990432905 cites W1588407400 @default.
- W2990432905 cites W1642048332 @default.
- W2990432905 cites W1786225110 @default.
- W2990432905 cites W1836624612 @default.
- W2990432905 cites W1885363765 @default.
- W2990432905 cites W1985586071 @default.
- W2990432905 cites W1986954817 @default.
- W2990432905 cites W2004934413 @default.
- W2990432905 cites W2009528133 @default.
- W2990432905 cites W2014554270 @default.
- W2990432905 cites W2021787435 @default.
- W2990432905 cites W2027931360 @default.
- W2990432905 cites W2042897091 @default.
- W2990432905 cites W2047459256 @default.
- W2990432905 cites W2048144661 @default.
- W2990432905 cites W2091400352 @default.
- W2990432905 cites W2113319997 @default.
- W2990432905 cites W2122258381 @default.
- W2990432905 cites W2133287637 @default.
- W2990432905 cites W2136503713 @default.
- W2990432905 cites W2141104431 @default.
- W2990432905 cites W2151130155 @default.
- W2990432905 cites W2155737612 @default.
- W2990432905 cites W2156875677 @default.
- W2990432905 cites W2172143926 @default.
- W2990432905 cites W2177713520 @default.
- W2990432905 cites W2203385592 @default.
- W2990432905 cites W2207590045 @default.
- W2990432905 cites W2267214330 @default.
- W2990432905 cites W2286246956 @default.
- W2990432905 cites W2289473976 @default.
- W2990432905 cites W2310992461 @default.
- W2990432905 cites W2326750853 @default.
- W2990432905 cites W2339610419 @default.
- W2990432905 cites W2460890332 @default.
- W2990432905 cites W2515433123 @default.
- W2990432905 cites W2531860834 @default.
- W2990432905 cites W2549587813 @default.
- W2990432905 cites W2560165923 @default.
- W2990432905 cites W2563457968 @default.
- W2990432905 cites W2584370399 @default.
- W2990432905 cites W2610942279 @default.
- W2990432905 cites W2623887230 @default.
- W2990432905 cites W2624015975 @default.
- W2990432905 cites W2759156034 @default.
- W2990432905 cites W2760623381 @default.
- W2990432905 cites W2766463156 @default.
- W2990432905 cites W2793077959 @default.
- W2990432905 cites W2808382262 @default.
- W2990432905 cites W2890975365 @default.
- W2990432905 cites W2898567804 @default.
- W2990432905 cites W2901219089 @default.
- W2990432905 cites W2902782470 @default.
- W2990432905 cites W2906224420 @default.
- W2990432905 cites W2908844763 @default.
- W2990432905 cites W2915546192 @default.
- W2990432905 cites W2931511452 @default.
- W2990432905 cites W2935726379 @default.
- W2990432905 cites W2935807169 @default.
- W2990432905 cites W2938934574 @default.
- W2990432905 cites W2942309166 @default.
- W2990432905 cites W2944798981 @default.
- W2990432905 cites W2950132512 @default.
- W2990432905 cites W2952378269 @default.
- W2990432905 cites W2963842034 @default.
- W2990432905 cites W2989801048 @default.
- W2990432905 cites W48931055 @default.
- W2990432905 cites W584417441 @default.
- W2990432905 doi "https://doi.org/10.21037/atm.2019.10.109" @default.
- W2990432905 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6944557" @default.
- W2990432905 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31930085" @default.
- W2990432905 hasPublicationYear "2019" @default.
- W2990432905 type Work @default.
- W2990432905 sameAs 2990432905 @default.
- W2990432905 citedByCount "14" @default.
- W2990432905 countsByYear W29904329052020 @default.
- W2990432905 countsByYear W29904329052021 @default.
- W2990432905 countsByYear W29904329052022 @default.
- W2990432905 countsByYear W29904329052023 @default.
- W2990432905 crossrefType "journal-article" @default.
- W2990432905 hasAuthorship W2990432905A5000809249 @default.
- W2990432905 hasAuthorship W2990432905A5005842784 @default.
- W2990432905 hasAuthorship W2990432905A5011172463 @default.
- W2990432905 hasAuthorship W2990432905A5031654386 @default.
- W2990432905 hasAuthorship W2990432905A5051424423 @default.
- W2990432905 hasAuthorship W2990432905A5052210474 @default.