Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990453062> ?p ?o ?g. }
- W2990453062 endingPage "965" @default.
- W2990453062 startingPage "965" @default.
- W2990453062 abstract "The prediction of protein–ligand binding sites is important in drug discovery and drug design. Protein–ligand binding site prediction computational methods are inexpensive and fast compared with experimental methods. This paper proposes a new computational method, SXGBsite, which includes the synthetic minority over-sampling technique (SMOTE) and the Extreme Gradient Boosting (XGBoost). SXGBsite uses the position-specific scoring matrix discrete cosine transform (PSSM-DCT) and predicted solvent accessibility (PSA) to extract features containing sequence information. A new balanced dataset was generated by SMOTE to improve classifier performance, and a prediction model was constructed using XGBoost. The parallel computing and regularization techniques enabled high-quality and fast predictions and mitigated overfitting caused by SMOTE. An evaluation using 12 different types of ligand binding site independent test sets showed that SXGBsite performs similarly to the existing methods on eight of the independent test sets with a faster computation time. SXGBsite may be applied as a complement to biological experiments." @default.
- W2990453062 created "2019-12-05" @default.
- W2990453062 creator A5010800472 @default.
- W2990453062 creator A5012922372 @default.
- W2990453062 creator A5039012869 @default.
- W2990453062 date "2019-11-22" @default.
- W2990453062 modified "2023-10-15" @default.
- W2990453062 title "SXGBsite: Prediction of Protein–Ligand Binding Sites Using Sequence Information and Extreme Gradient Boosting" @default.
- W2990453062 cites W1491553314 @default.
- W2990453062 cites W1601495365 @default.
- W2990453062 cites W1678356000 @default.
- W2990453062 cites W1964880253 @default.
- W2990453062 cites W1971894358 @default.
- W2990453062 cites W1973356821 @default.
- W2990453062 cites W1978987398 @default.
- W2990453062 cites W1980897319 @default.
- W2990453062 cites W1983259744 @default.
- W2990453062 cites W2010468965 @default.
- W2990453062 cites W2018661561 @default.
- W2990453062 cites W2024046085 @default.
- W2990453062 cites W2031194866 @default.
- W2990453062 cites W2031614119 @default.
- W2990453062 cites W2032690714 @default.
- W2990453062 cites W2038670706 @default.
- W2990453062 cites W2043638247 @default.
- W2990453062 cites W2053257505 @default.
- W2990453062 cites W2058463742 @default.
- W2990453062 cites W2059215264 @default.
- W2990453062 cites W2062884696 @default.
- W2990453062 cites W2077776336 @default.
- W2990453062 cites W2083436148 @default.
- W2990453062 cites W2089573659 @default.
- W2990453062 cites W2089716128 @default.
- W2990453062 cites W2091563009 @default.
- W2990453062 cites W2096986143 @default.
- W2990453062 cites W2105902442 @default.
- W2990453062 cites W2111705855 @default.
- W2990453062 cites W2112109058 @default.
- W2990453062 cites W2115547583 @default.
- W2990453062 cites W2119948329 @default.
- W2990453062 cites W2126754352 @default.
- W2990453062 cites W2128533758 @default.
- W2990453062 cites W2128983966 @default.
- W2990453062 cites W2130479394 @default.
- W2990453062 cites W2132395520 @default.
- W2990453062 cites W2135002317 @default.
- W2990453062 cites W2135435176 @default.
- W2990453062 cites W2139942857 @default.
- W2990453062 cites W2140538197 @default.
- W2990453062 cites W2140611297 @default.
- W2990453062 cites W2145023212 @default.
- W2990453062 cites W2148143831 @default.
- W2990453062 cites W2149997286 @default.
- W2990453062 cites W2152856869 @default.
- W2990453062 cites W2156136208 @default.
- W2990453062 cites W2157122545 @default.
- W2990453062 cites W2158714788 @default.
- W2990453062 cites W2164088236 @default.
- W2990453062 cites W2211863317 @default.
- W2990453062 cites W2526285516 @default.
- W2990453062 cites W2531919408 @default.
- W2990453062 cites W2608559058 @default.
- W2990453062 cites W2739999456 @default.
- W2990453062 cites W2757522837 @default.
- W2990453062 cites W2767813457 @default.
- W2990453062 cites W2770006469 @default.
- W2990453062 cites W2890285536 @default.
- W2990453062 cites W2911964244 @default.
- W2990453062 cites W2924197217 @default.
- W2990453062 cites W4239510810 @default.
- W2990453062 cites W4255677297 @default.
- W2990453062 doi "https://doi.org/10.3390/genes10120965" @default.
- W2990453062 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6947422" @default.
- W2990453062 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31771119" @default.
- W2990453062 hasPublicationYear "2019" @default.
- W2990453062 type Work @default.
- W2990453062 sameAs 2990453062 @default.
- W2990453062 citedByCount "12" @default.
- W2990453062 countsByYear W29904530622020 @default.
- W2990453062 countsByYear W29904530622021 @default.
- W2990453062 countsByYear W29904530622022 @default.
- W2990453062 crossrefType "journal-article" @default.
- W2990453062 hasAuthorship W2990453062A5010800472 @default.
- W2990453062 hasAuthorship W2990453062A5012922372 @default.
- W2990453062 hasAuthorship W2990453062A5039012869 @default.
- W2990453062 hasBestOaLocation W29904530621 @default.
- W2990453062 hasConcept C11413529 @default.
- W2990453062 hasConcept C115961682 @default.
- W2990453062 hasConcept C119857082 @default.
- W2990453062 hasConcept C124101348 @default.
- W2990453062 hasConcept C153180895 @default.
- W2990453062 hasConcept C154945302 @default.
- W2990453062 hasConcept C22019652 @default.
- W2990453062 hasConcept C2221639 @default.
- W2990453062 hasConcept C41008148 @default.
- W2990453062 hasConcept C45374587 @default.
- W2990453062 hasConcept C46686674 @default.
- W2990453062 hasConcept C50644808 @default.