Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990457933> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2990457933 abstract "Wireless communications plays a pivotal role in multiple complex domains such as tactical networks or space communications. Traditional physical (PHY) layer protocols for digital communications contain chains of signal processing blocks that have been mathematically optimized to transmit information bits efficiently over noisy channels. Unfortunately, the ongoing advancement of hardware and software design, and algorithm development, makes it difficult for some domains to keep up with the constant change in modern communication systems. It has been shown previously that combining deep learning with digital modulation (deepmod) allows a system to learn communications on its own rather than requiring human-invented protocols. This is particularly attractive to space communications where updating PHY layer technologies may be prohibitively complex or expensive. A link using deepmod is able to learn both waveform synthesis (transmit) and analysis (receive) that is self-taught. When deepmod is first initiated it has no knowledge of the channel medium but quickly learns to communicate by synthesizing waveforms that can be successfully decoded at the other end of the link. This is accomplished by a custom deep neural network especially suited for this particular task of learning. In this current work, we show that deepmod learns in both traditional point-to-point channels as well as the more abstract multi-hop amplify-and-forward relay channel. In the experimental results, even though no direct link between transmitter and receiver exists, deepmod-enabled nodes still create latent information bearing waveforms that can be used for communications." @default.
- W2990457933 created "2019-12-05" @default.
- W2990457933 creator A5026717019 @default.
- W2990457933 creator A5029444976 @default.
- W2990457933 date "2019-06-01" @default.
- W2990457933 modified "2023-09-27" @default.
- W2990457933 title "Self-Taught Waveform Synthesis and Analysis in the Amplify-and-Forward Relay Channel" @default.
- W2990457933 cites W1492170803 @default.
- W2990457933 cites W2005031788 @default.
- W2990457933 cites W2052878422 @default.
- W2990457933 cites W2089350479 @default.
- W2990457933 cites W2099471712 @default.
- W2990457933 cites W2110527032 @default.
- W2990457933 cites W2334561804 @default.
- W2990457933 cites W2422724238 @default.
- W2990457933 cites W2508048393 @default.
- W2990457933 cites W2562173243 @default.
- W2990457933 cites W2588963128 @default.
- W2990457933 cites W2592882403 @default.
- W2990457933 cites W2598123501 @default.
- W2990457933 cites W2798333393 @default.
- W2990457933 cites W2919115771 @default.
- W2990457933 cites W2907541244 @default.
- W2990457933 doi "https://doi.org/10.1109/ccaaw.2019.8904892" @default.
- W2990457933 hasPublicationYear "2019" @default.
- W2990457933 type Work @default.
- W2990457933 sameAs 2990457933 @default.
- W2990457933 citedByCount "0" @default.
- W2990457933 crossrefType "proceedings-article" @default.
- W2990457933 hasAuthorship W2990457933A5026717019 @default.
- W2990457933 hasAuthorship W2990457933A5029444976 @default.
- W2990457933 hasBestOaLocation W29904579332 @default.
- W2990457933 hasConcept C101765175 @default.
- W2990457933 hasConcept C113775141 @default.
- W2990457933 hasConcept C121332964 @default.
- W2990457933 hasConcept C127162648 @default.
- W2990457933 hasConcept C163258240 @default.
- W2990457933 hasConcept C19247436 @default.
- W2990457933 hasConcept C197424946 @default.
- W2990457933 hasConcept C2778156585 @default.
- W2990457933 hasConcept C2779609627 @default.
- W2990457933 hasConcept C41008148 @default.
- W2990457933 hasConcept C47798520 @default.
- W2990457933 hasConcept C554190296 @default.
- W2990457933 hasConcept C555944384 @default.
- W2990457933 hasConcept C62520636 @default.
- W2990457933 hasConcept C76155785 @default.
- W2990457933 hasConceptScore W2990457933C101765175 @default.
- W2990457933 hasConceptScore W2990457933C113775141 @default.
- W2990457933 hasConceptScore W2990457933C121332964 @default.
- W2990457933 hasConceptScore W2990457933C127162648 @default.
- W2990457933 hasConceptScore W2990457933C163258240 @default.
- W2990457933 hasConceptScore W2990457933C19247436 @default.
- W2990457933 hasConceptScore W2990457933C197424946 @default.
- W2990457933 hasConceptScore W2990457933C2778156585 @default.
- W2990457933 hasConceptScore W2990457933C2779609627 @default.
- W2990457933 hasConceptScore W2990457933C41008148 @default.
- W2990457933 hasConceptScore W2990457933C47798520 @default.
- W2990457933 hasConceptScore W2990457933C554190296 @default.
- W2990457933 hasConceptScore W2990457933C555944384 @default.
- W2990457933 hasConceptScore W2990457933C62520636 @default.
- W2990457933 hasConceptScore W2990457933C76155785 @default.
- W2990457933 hasLocation W29904579331 @default.
- W2990457933 hasLocation W29904579332 @default.
- W2990457933 hasOpenAccess W2990457933 @default.
- W2990457933 hasPrimaryLocation W29904579331 @default.
- W2990457933 hasRelatedWork W2060534175 @default.
- W2990457933 hasRelatedWork W2112947604 @default.
- W2990457933 hasRelatedWork W2148846202 @default.
- W2990457933 hasRelatedWork W2165255459 @default.
- W2990457933 hasRelatedWork W2197207946 @default.
- W2990457933 hasRelatedWork W2247458787 @default.
- W2990457933 hasRelatedWork W2602314171 @default.
- W2990457933 hasRelatedWork W2729830248 @default.
- W2990457933 hasRelatedWork W3156152621 @default.
- W2990457933 hasRelatedWork W4226450800 @default.
- W2990457933 isParatext "false" @default.
- W2990457933 isRetracted "false" @default.
- W2990457933 magId "2990457933" @default.
- W2990457933 workType "article" @default.