Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990463454> ?p ?o ?g. }
- W2990463454 endingPage "175289" @default.
- W2990463454 startingPage "175277" @default.
- W2990463454 abstract "It is crucial to identify and extract the weak transient features embedded in the vibration signals for bearing health monitoring and fault diagnosis. However, due to the macro-structural disturbance and background noise interference, it is not easy to mine the transient features, especially at the apparent failure stage. Meanwhile, the actual mechanism of bearing fault detect can be not simply expressed by the formulated theory models without consideration of the actual physical collision process. To overcome these issues, motivated by the merits of time-frequency manifold (TFM), this paper proposes a new transient feature extraction method, called parallel time-frequency manifold (PTFM) filtering, by simultaneously using TFM-based reconstruction with TFM-based filter in parallel for transient feature extraction. First, to improve the computational efficiency of TFM, two-dimensional discrete wavelet transform is employed on the raw time-frequency distribution (TFD) with image compression. TFM learning is later used to mine the principle manifolds from those approximation sub-images. Then, the amplitudes of the raw time-frequency image can be reconstructed by TFM feature bases while the desired location of time-frequency feature can be captured by TFM morphology filter in a process of image morphology. With raw time-frequency phases in a series of inverse processes, the de-noised signal can be finally synthesized from these filtered images. The proposed method accomplishes a natural manifold feature denoising by combining the sparse theory with image morphology, and demonstrates attractive prospects in the following three aspects: signal de-noising with a self-learning mode in the view of image morphology processing combined with sparse theory, fault diagnosis with in-band noise/close interference removal, and machine health monitoring with capability in capturing sensitive failure information. Simulations and experiments confirmed the effectiveness of the proposed PTFM filtering method in noise suppression and feature enhancement, which is valuable for bearing health monitoring and diagnosis applications." @default.
- W2990463454 created "2019-12-05" @default.
- W2990463454 creator A5034422878 @default.
- W2990463454 creator A5054306467 @default.
- W2990463454 creator A5055068090 @default.
- W2990463454 creator A5071116200 @default.
- W2990463454 date "2019-01-01" @default.
- W2990463454 modified "2023-10-07" @default.
- W2990463454 title "Transient Signal Analysis Using Parallel Time-Frequency Manifold Filtering for Bearing Health Diagnosis" @default.
- W2990463454 cites W1438045566 @default.
- W2990463454 cites W1969697093 @default.
- W2990463454 cites W1984688555 @default.
- W2990463454 cites W1998204489 @default.
- W2990463454 cites W2019505419 @default.
- W2990463454 cites W2033800551 @default.
- W2990463454 cites W2053443947 @default.
- W2990463454 cites W2092619343 @default.
- W2990463454 cites W2133551681 @default.
- W2990463454 cites W2140247620 @default.
- W2990463454 cites W2161973539 @default.
- W2990463454 cites W2231481402 @default.
- W2990463454 cites W2416436338 @default.
- W2990463454 cites W2515618497 @default.
- W2990463454 cites W2522013511 @default.
- W2990463454 cites W2574540884 @default.
- W2990463454 cites W2736470268 @default.
- W2990463454 cites W2766819698 @default.
- W2990463454 cites W2768148617 @default.
- W2990463454 cites W2788684127 @default.
- W2990463454 cites W2799501716 @default.
- W2990463454 cites W2885299072 @default.
- W2990463454 cites W2890799146 @default.
- W2990463454 cites W2917838345 @default.
- W2990463454 cites W2920810181 @default.
- W2990463454 cites W2941949073 @default.
- W2990463454 doi "https://doi.org/10.1109/access.2019.2956824" @default.
- W2990463454 hasPublicationYear "2019" @default.
- W2990463454 type Work @default.
- W2990463454 sameAs 2990463454 @default.
- W2990463454 citedByCount "2" @default.
- W2990463454 countsByYear W29904634542022 @default.
- W2990463454 countsByYear W29904634542023 @default.
- W2990463454 crossrefType "journal-article" @default.
- W2990463454 hasAuthorship W2990463454A5034422878 @default.
- W2990463454 hasAuthorship W2990463454A5054306467 @default.
- W2990463454 hasAuthorship W2990463454A5055068090 @default.
- W2990463454 hasAuthorship W2990463454A5071116200 @default.
- W2990463454 hasBestOaLocation W29904634541 @default.
- W2990463454 hasConcept C106131492 @default.
- W2990463454 hasConcept C111919701 @default.
- W2990463454 hasConcept C11413529 @default.
- W2990463454 hasConcept C127313418 @default.
- W2990463454 hasConcept C138885662 @default.
- W2990463454 hasConcept C142433447 @default.
- W2990463454 hasConcept C153180895 @default.
- W2990463454 hasConcept C154945302 @default.
- W2990463454 hasConcept C165205528 @default.
- W2990463454 hasConcept C175551986 @default.
- W2990463454 hasConcept C199360897 @default.
- W2990463454 hasConcept C2776401178 @default.
- W2990463454 hasConcept C2779843651 @default.
- W2990463454 hasConcept C2780799671 @default.
- W2990463454 hasConcept C31972630 @default.
- W2990463454 hasConcept C41008148 @default.
- W2990463454 hasConcept C41895202 @default.
- W2990463454 hasConcept C47432892 @default.
- W2990463454 hasConcept C52622490 @default.
- W2990463454 hasConceptScore W2990463454C106131492 @default.
- W2990463454 hasConceptScore W2990463454C111919701 @default.
- W2990463454 hasConceptScore W2990463454C11413529 @default.
- W2990463454 hasConceptScore W2990463454C127313418 @default.
- W2990463454 hasConceptScore W2990463454C138885662 @default.
- W2990463454 hasConceptScore W2990463454C142433447 @default.
- W2990463454 hasConceptScore W2990463454C153180895 @default.
- W2990463454 hasConceptScore W2990463454C154945302 @default.
- W2990463454 hasConceptScore W2990463454C165205528 @default.
- W2990463454 hasConceptScore W2990463454C175551986 @default.
- W2990463454 hasConceptScore W2990463454C199360897 @default.
- W2990463454 hasConceptScore W2990463454C2776401178 @default.
- W2990463454 hasConceptScore W2990463454C2779843651 @default.
- W2990463454 hasConceptScore W2990463454C2780799671 @default.
- W2990463454 hasConceptScore W2990463454C31972630 @default.
- W2990463454 hasConceptScore W2990463454C41008148 @default.
- W2990463454 hasConceptScore W2990463454C41895202 @default.
- W2990463454 hasConceptScore W2990463454C47432892 @default.
- W2990463454 hasConceptScore W2990463454C52622490 @default.
- W2990463454 hasFunder F4320321001 @default.
- W2990463454 hasFunder F4320321543 @default.
- W2990463454 hasFunder F4320334924 @default.
- W2990463454 hasLocation W29904634541 @default.
- W2990463454 hasOpenAccess W2990463454 @default.
- W2990463454 hasPrimaryLocation W29904634541 @default.
- W2990463454 hasRelatedWork W1535527837 @default.
- W2990463454 hasRelatedWork W1671198760 @default.
- W2990463454 hasRelatedWork W2016461833 @default.
- W2990463454 hasRelatedWork W2060777227 @default.
- W2990463454 hasRelatedWork W2135003436 @default.
- W2990463454 hasRelatedWork W2185970706 @default.