Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990558730> ?p ?o ?g. }
- W2990558730 endingPage "951" @default.
- W2990558730 startingPage "933" @default.
- W2990558730 abstract "Contamination issues especially heavy metals such as cadmium (Cd) and lead (Pb) are currently considered as one of the most important and unsolved issues, which are directly connected with human and environmental health. Hence, its accurate estimation is of vital importance in the agricultural and environmental engineering. In this study, lead and cadmium were estimated from readily measurable soil data namely, clay, organic carbon (O.C.), pH, phosphorus (P), and total nitrogen (T.N.) using the multiple linear regression (MLR), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models. For this purpose, 250 soil samples collected in the Province of Gilan in Iran were used to train and test the above-mentioned models. For the assessment models, the statistical parameters such as the coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) were used. The results showed that the ANN model with the RMSE of 1.04 and 0.23 outperforms the ANFIS model with the RMSE of 2.56 and 1.27 for the cadmium and lead, respectively. Finally, the results of the sensitivity analyses showed that the organic carbon and phosphorus have the most and least significant effects on the estimation of lead and cadmium parameters, respectively." @default.
- W2990558730 created "2019-12-05" @default.
- W2990558730 creator A5003347605 @default.
- W2990558730 creator A5057828017 @default.
- W2990558730 creator A5062034964 @default.
- W2990558730 date "2019-11-27" @default.
- W2990558730 modified "2023-09-28" @default.
- W2990558730 title "Estimating the amount of cadmium and lead in the polluted soil using artificial intelligence models" @default.
- W2990558730 cites W1192563785 @default.
- W2990558730 cites W1597710764 @default.
- W2990558730 cites W1963507870 @default.
- W2990558730 cites W1964549391 @default.
- W2990558730 cites W1964601026 @default.
- W2990558730 cites W1965567895 @default.
- W2990558730 cites W1968005953 @default.
- W2990558730 cites W1969000438 @default.
- W2990558730 cites W1974119730 @default.
- W2990558730 cites W1977537959 @default.
- W2990558730 cites W1980965960 @default.
- W2990558730 cites W1995507197 @default.
- W2990558730 cites W1996206015 @default.
- W2990558730 cites W2000672265 @default.
- W2990558730 cites W2003410902 @default.
- W2990558730 cites W2017015603 @default.
- W2990558730 cites W2019207321 @default.
- W2990558730 cites W2024141630 @default.
- W2990558730 cites W2025343956 @default.
- W2990558730 cites W2027160099 @default.
- W2990558730 cites W2042823897 @default.
- W2990558730 cites W2044997673 @default.
- W2990558730 cites W2057849944 @default.
- W2990558730 cites W2057931719 @default.
- W2990558730 cites W2064507630 @default.
- W2990558730 cites W2066579998 @default.
- W2990558730 cites W2073596094 @default.
- W2990558730 cites W2075750082 @default.
- W2990558730 cites W2080018923 @default.
- W2990558730 cites W2081412365 @default.
- W2990558730 cites W2081781496 @default.
- W2990558730 cites W2091160252 @default.
- W2990558730 cites W2095558420 @default.
- W2990558730 cites W2101507499 @default.
- W2990558730 cites W2104487864 @default.
- W2990558730 cites W2107939074 @default.
- W2990558730 cites W2114922523 @default.
- W2990558730 cites W2153126595 @default.
- W2990558730 cites W2154182906 @default.
- W2990558730 cites W2160574494 @default.
- W2990558730 cites W2180637001 @default.
- W2990558730 cites W2268059787 @default.
- W2990558730 cites W2346297907 @default.
- W2990558730 cites W2529181244 @default.
- W2990558730 cites W2608273512 @default.
- W2990558730 cites W26326045 @default.
- W2990558730 cites W2738429580 @default.
- W2990558730 cites W2745956354 @default.
- W2990558730 cites W2752337725 @default.
- W2990558730 cites W2768460810 @default.
- W2990558730 cites W2768585308 @default.
- W2990558730 cites W2789402830 @default.
- W2990558730 cites W2793974136 @default.
- W2990558730 cites W2801145859 @default.
- W2990558730 cites W2804137795 @default.
- W2990558730 cites W2805995599 @default.
- W2990558730 cites W2927632987 @default.
- W2990558730 cites W4206290514 @default.
- W2990558730 cites W4233241541 @default.
- W2990558730 cites W4235384082 @default.
- W2990558730 cites W2883572975 @default.
- W2990558730 doi "https://doi.org/10.1080/19648189.2019.1686429" @default.
- W2990558730 hasPublicationYear "2019" @default.
- W2990558730 type Work @default.
- W2990558730 sameAs 2990558730 @default.
- W2990558730 citedByCount "15" @default.
- W2990558730 countsByYear W29905587302020 @default.
- W2990558730 countsByYear W29905587302021 @default.
- W2990558730 countsByYear W29905587302022 @default.
- W2990558730 countsByYear W29905587302023 @default.
- W2990558730 crossrefType "journal-article" @default.
- W2990558730 hasAuthorship W2990558730A5003347605 @default.
- W2990558730 hasAuthorship W2990558730A5057828017 @default.
- W2990558730 hasAuthorship W2990558730A5062034964 @default.
- W2990558730 hasConcept C105795698 @default.
- W2990558730 hasConcept C107872376 @default.
- W2990558730 hasConcept C119857082 @default.
- W2990558730 hasConcept C128990827 @default.
- W2990558730 hasConcept C139945424 @default.
- W2990558730 hasConcept C150217764 @default.
- W2990558730 hasConcept C154945302 @default.
- W2990558730 hasConcept C159390177 @default.
- W2990558730 hasConcept C178790620 @default.
- W2990558730 hasConcept C185592680 @default.
- W2990558730 hasConcept C186108316 @default.
- W2990558730 hasConcept C195975749 @default.
- W2990558730 hasConcept C2780092901 @default.
- W2990558730 hasConcept C33923547 @default.
- W2990558730 hasConcept C39432304 @default.
- W2990558730 hasConcept C41008148 @default.