Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990640894> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2990640894 abstract "Cassava roots are complex structures comprising several distinct types of root. The number and size of the storage roots are two potential phenotypic traits reflecting crop yield and quality. Counting and measuring the size of cassava storage roots are usually done manually, or semi-automatically by first segmenting cassava root images. However, occlusion of both storage and fibrous roots makes the process both time-consuming and error-prone. While Convolutional Neural Nets have shown performance above the state-of-the-art in many image processing and analysis tasks, there are currently a limited number of Convolutional Neural Net-based methods for counting plant features. This is due to the limited availability of data, annotated by expert plant biologists, which represents all possible measurement outcomes. Existing works in this area either learn a direct image-to-count regressor model by regressing to a count value, or perform a count after segmenting the image. We, however, address the problem using a direct image-to-count prediction model. This is made possible by generating synthetic images, using a conditional Generative Adversarial Network (GAN), to provide training data for missing classes. We automatically form cassava storage root masks for any missing classes using existing ground-truth masks, and input them as a condition to our GAN model to generate synthetic root images. We combine the resulting synthetic images with real images to learn a direct image-to-count prediction model capable of counting the number of storage roots in real cassava images taken from a low cost aeroponic growth system. These models are used to develop a system that counts cassava storage roots in real images. Our system first predicts age group ('young' and 'old' roots; pertinent to our image capture regime) in a given image, and then, based on this prediction, selects an appropriate model to predict the number of storage roots. We achieve 91% accuracy on predicting ages of storage roots, and 86% and 71% overall percentage agreement on counting 'old' and 'young' storage roots respectively. Thus we are able to demonstrate that synthetically generated cassava root images can be used to supplement missing root classes, turning the counting problem into a direct image-to-count prediction task." @default.
- W2990640894 created "2019-12-05" @default.
- W2990640894 creator A5009251304 @default.
- W2990640894 creator A5035689950 @default.
- W2990640894 creator A5042809328 @default.
- W2990640894 creator A5074300250 @default.
- W2990640894 creator A5078538883 @default.
- W2990640894 date "2019-11-26" @default.
- W2990640894 modified "2023-10-16" @default.
- W2990640894 title "Convolutional Neural Net-Based Cassava Storage Root Counting Using Real and Synthetic Images" @default.
- W2990640894 cites W1974660957 @default.
- W2990640894 cites W2086330580 @default.
- W2990640894 cites W2111149796 @default.
- W2990640894 cites W2264784471 @default.
- W2990640894 cites W2278786050 @default.
- W2990640894 cites W2353457699 @default.
- W2990640894 cites W2382557698 @default.
- W2990640894 cites W2517701366 @default.
- W2990640894 cites W2578363764 @default.
- W2990640894 cites W2611227133 @default.
- W2990640894 cites W2733608569 @default.
- W2990640894 cites W2752272426 @default.
- W2990640894 cites W2752728932 @default.
- W2990640894 cites W2799759580 @default.
- W2990640894 cites W2810099404 @default.
- W2990640894 cites W2963073614 @default.
- W2990640894 cites W2963446712 @default.
- W2990640894 cites W2963881378 @default.
- W2990640894 cites W2988863511 @default.
- W2990640894 doi "https://doi.org/10.3389/fpls.2019.01516" @default.
- W2990640894 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6888701" @default.
- W2990640894 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31850020" @default.
- W2990640894 hasPublicationYear "2019" @default.
- W2990640894 type Work @default.
- W2990640894 sameAs 2990640894 @default.
- W2990640894 citedByCount "13" @default.
- W2990640894 countsByYear W29906408942020 @default.
- W2990640894 countsByYear W29906408942021 @default.
- W2990640894 countsByYear W29906408942022 @default.
- W2990640894 countsByYear W29906408942023 @default.
- W2990640894 crossrefType "journal-article" @default.
- W2990640894 hasAuthorship W2990640894A5009251304 @default.
- W2990640894 hasAuthorship W2990640894A5035689950 @default.
- W2990640894 hasAuthorship W2990640894A5042809328 @default.
- W2990640894 hasAuthorship W2990640894A5074300250 @default.
- W2990640894 hasAuthorship W2990640894A5078538883 @default.
- W2990640894 hasBestOaLocation W29906408941 @default.
- W2990640894 hasConcept C115961682 @default.
- W2990640894 hasConcept C138885662 @default.
- W2990640894 hasConcept C146849305 @default.
- W2990640894 hasConcept C153180895 @default.
- W2990640894 hasConcept C154945302 @default.
- W2990640894 hasConcept C167966045 @default.
- W2990640894 hasConcept C171078966 @default.
- W2990640894 hasConcept C39890363 @default.
- W2990640894 hasConcept C41008148 @default.
- W2990640894 hasConcept C41895202 @default.
- W2990640894 hasConcept C81363708 @default.
- W2990640894 hasConceptScore W2990640894C115961682 @default.
- W2990640894 hasConceptScore W2990640894C138885662 @default.
- W2990640894 hasConceptScore W2990640894C146849305 @default.
- W2990640894 hasConceptScore W2990640894C153180895 @default.
- W2990640894 hasConceptScore W2990640894C154945302 @default.
- W2990640894 hasConceptScore W2990640894C167966045 @default.
- W2990640894 hasConceptScore W2990640894C171078966 @default.
- W2990640894 hasConceptScore W2990640894C39890363 @default.
- W2990640894 hasConceptScore W2990640894C41008148 @default.
- W2990640894 hasConceptScore W2990640894C41895202 @default.
- W2990640894 hasConceptScore W2990640894C81363708 @default.
- W2990640894 hasFunder F4320334629 @default.
- W2990640894 hasLocation W29906408941 @default.
- W2990640894 hasLocation W29906408942 @default.
- W2990640894 hasLocation W29906408943 @default.
- W2990640894 hasLocation W29906408944 @default.
- W2990640894 hasLocation W29906408945 @default.
- W2990640894 hasLocation W29906408946 @default.
- W2990640894 hasLocation W29906408947 @default.
- W2990640894 hasLocation W29906408948 @default.
- W2990640894 hasLocation W29906408949 @default.
- W2990640894 hasOpenAccess W2990640894 @default.
- W2990640894 hasPrimaryLocation W29906408941 @default.
- W2990640894 hasRelatedWork W2057836452 @default.
- W2990640894 hasRelatedWork W2441762250 @default.
- W2990640894 hasRelatedWork W2521062615 @default.
- W2990640894 hasRelatedWork W2549299049 @default.
- W2990640894 hasRelatedWork W2767651786 @default.
- W2990640894 hasRelatedWork W2912288872 @default.
- W2990640894 hasRelatedWork W3015398991 @default.
- W2990640894 hasRelatedWork W3016958897 @default.
- W2990640894 hasRelatedWork W3181746755 @default.
- W2990640894 hasRelatedWork W4283379348 @default.
- W2990640894 hasVolume "10" @default.
- W2990640894 isParatext "false" @default.
- W2990640894 isRetracted "false" @default.
- W2990640894 magId "2990640894" @default.
- W2990640894 workType "article" @default.