Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990674182> ?p ?o ?g. }
- W2990674182 endingPage "4712" @default.
- W2990674182 startingPage "4699" @default.
- W2990674182 abstract "Compressive sensing (CS) is applied to electrocardiography (ECG) telemonitoring system to address the energy constraint of signal acquisition in sensors. In addition, on-sensor-analysis transmitting only abnormal data further reduces the energy consumption. To combine both advantages, “On-CS-sensor-analysis” can be achieved by compressed learning (CL), which analyzes signals directly in compressed domain. Extreme learning machine (ELM) provides an effective solution to achieve the goal of low-complexity CL. However, single ELM model has limited accuracy and is sensitive to the quality of data. Furthermore, hardware non-idealities in CS sensors result in learning performance degradation. In this work, we propose the ensemble of sub-eigenspace-ELM (SE-ELM), including two novel approaches: 1) We develop the eigenspace transformation for compressed noisy data, and further utilize a subspace-based dictionary to remove the interferences, and 2) Hardware-friendly design for ensemble of ELM provides high accuracy while maintaining low complexity. The simulation results on ECG-based atrial fibrillation show the SE-ELM can achieve the highest accuracy with 61.9% savings of the required multiplications compared with conventional methods. Finally, we implement this engine in TSMC 90 nm technology. The postlayout results show the proposed CL engine can provide competitive area- and energy-efficiency compared to existing machine learning engines." @default.
- W2990674182 created "2019-12-05" @default.
- W2990674182 creator A5011949928 @default.
- W2990674182 creator A5060083525 @default.
- W2990674182 creator A5065278736 @default.
- W2990674182 creator A5075824095 @default.
- W2990674182 date "2019-12-01" @default.
- W2990674182 modified "2023-10-01" @default.
- W2990674182 title "Robust and Lightweight Ensemble Extreme Learning Machine Engine Based on Eigenspace Domain for Compressed Learning" @default.
- W2990674182 cites W1973695593 @default.
- W2990674182 cites W1995238635 @default.
- W2990674182 cites W1998841124 @default.
- W2990674182 cites W1999368465 @default.
- W2990674182 cites W2003266823 @default.
- W2990674182 cites W2018642663 @default.
- W2990674182 cites W2041970641 @default.
- W2990674182 cites W2086659790 @default.
- W2990674182 cites W2088900648 @default.
- W2990674182 cites W2104191296 @default.
- W2990674182 cites W2104266187 @default.
- W2990674182 cites W2104563593 @default.
- W2990674182 cites W2109449402 @default.
- W2990674182 cites W2129638195 @default.
- W2990674182 cites W2153635508 @default.
- W2990674182 cites W2164452299 @default.
- W2990674182 cites W2169382889 @default.
- W2990674182 cites W2185491959 @default.
- W2990674182 cites W2346303648 @default.
- W2990674182 cites W2746514453 @default.
- W2990674182 cites W2751545355 @default.
- W2990674182 cites W2757514886 @default.
- W2990674182 cites W2770136513 @default.
- W2990674182 cites W2898723834 @default.
- W2990674182 cites W2911149048 @default.
- W2990674182 cites W4243524625 @default.
- W2990674182 cites W4250955649 @default.
- W2990674182 cites W4297944103 @default.
- W2990674182 doi "https://doi.org/10.1109/tcsi.2019.2940642" @default.
- W2990674182 hasPublicationYear "2019" @default.
- W2990674182 type Work @default.
- W2990674182 sameAs 2990674182 @default.
- W2990674182 citedByCount "22" @default.
- W2990674182 countsByYear W29906741822020 @default.
- W2990674182 countsByYear W29906741822021 @default.
- W2990674182 countsByYear W29906741822022 @default.
- W2990674182 countsByYear W29906741822023 @default.
- W2990674182 crossrefType "journal-article" @default.
- W2990674182 hasAuthorship W2990674182A5011949928 @default.
- W2990674182 hasAuthorship W2990674182A5060083525 @default.
- W2990674182 hasAuthorship W2990674182A5065278736 @default.
- W2990674182 hasAuthorship W2990674182A5075824095 @default.
- W2990674182 hasConcept C104317684 @default.
- W2990674182 hasConcept C105795698 @default.
- W2990674182 hasConcept C12267149 @default.
- W2990674182 hasConcept C124851039 @default.
- W2990674182 hasConcept C153180895 @default.
- W2990674182 hasConcept C154945302 @default.
- W2990674182 hasConcept C185592680 @default.
- W2990674182 hasConcept C186370098 @default.
- W2990674182 hasConcept C204241405 @default.
- W2990674182 hasConcept C2780150128 @default.
- W2990674182 hasConcept C32834561 @default.
- W2990674182 hasConcept C33923547 @default.
- W2990674182 hasConcept C41008148 @default.
- W2990674182 hasConcept C45942800 @default.
- W2990674182 hasConcept C50644808 @default.
- W2990674182 hasConcept C55493867 @default.
- W2990674182 hasConceptScore W2990674182C104317684 @default.
- W2990674182 hasConceptScore W2990674182C105795698 @default.
- W2990674182 hasConceptScore W2990674182C12267149 @default.
- W2990674182 hasConceptScore W2990674182C124851039 @default.
- W2990674182 hasConceptScore W2990674182C153180895 @default.
- W2990674182 hasConceptScore W2990674182C154945302 @default.
- W2990674182 hasConceptScore W2990674182C185592680 @default.
- W2990674182 hasConceptScore W2990674182C186370098 @default.
- W2990674182 hasConceptScore W2990674182C204241405 @default.
- W2990674182 hasConceptScore W2990674182C2780150128 @default.
- W2990674182 hasConceptScore W2990674182C32834561 @default.
- W2990674182 hasConceptScore W2990674182C33923547 @default.
- W2990674182 hasConceptScore W2990674182C41008148 @default.
- W2990674182 hasConceptScore W2990674182C45942800 @default.
- W2990674182 hasConceptScore W2990674182C50644808 @default.
- W2990674182 hasConceptScore W2990674182C55493867 @default.
- W2990674182 hasFunder F4320322795 @default.
- W2990674182 hasIssue "12" @default.
- W2990674182 hasLocation W29906741821 @default.
- W2990674182 hasOpenAccess W2990674182 @default.
- W2990674182 hasPrimaryLocation W29906741821 @default.
- W2990674182 hasRelatedWork W2041399278 @default.
- W2990674182 hasRelatedWork W2056016498 @default.
- W2990674182 hasRelatedWork W2136184105 @default.
- W2990674182 hasRelatedWork W2160451891 @default.
- W2990674182 hasRelatedWork W2277768259 @default.
- W2990674182 hasRelatedWork W2323792602 @default.
- W2990674182 hasRelatedWork W2336974148 @default.
- W2990674182 hasRelatedWork W3174451172 @default.
- W2990674182 hasRelatedWork W2187500075 @default.
- W2990674182 hasRelatedWork W2345184372 @default.