Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990713549> ?p ?o ?g. }
- W2990713549 abstract "Abstract Background During procedures for conducting multiple sequence alignment, that is so essential to use the substitution score of pairwise alignment. To compute adaptive scores for alignment, researchers usually use Hidden Markov Model or probabilistic consistency methods such as partition function. Recent studies show that optimizing the parameters for hidden Markov model, as well as integrating hidden Markov model with partition function can raise the accuracy of alignment. The combination of partition function and optimized HMM, which could further improve the alignment’s accuracy, however, was ignored by these researches. Results A novel algorithm for MSA called ProbPFP is presented in this paper. It intergrate optimized HMM by particle swarm with partition function. The algorithm of PSO was applied to optimize HMM’s parameters. After that, the posterior probability obtained by the HMM was combined with the one obtained by partition function, and thus to calculate an integrated substitution score for alignment. In order to evaluate the effectiveness of ProbPFP, we compared it with 13 outstanding or classic MSA methods. The results demonstrate that the alignments obtained by ProbPFP got the maximum mean TC scores and mean SP scores on these two benchmark datasets: SABmark and OXBench, and it got the second highest mean TC scores and mean SP scores on the benchmark dataset BAliBASE. ProbPFP is also compared with 4 other outstanding methods, by reconstructing the phylogenetic trees for six protein families extracted from the database TreeFam, based on the alignments obtained by these 5 methods. The result indicates that the reference trees are closer to the phylogenetic trees reconstructed from the alignments obtained by ProbPFP than the other methods. Conclusions We propose a new multiple sequence alignment method combining optimized HMM and partition function in this paper. The performance validates this method could make a great improvement of the alignment’s accuracy." @default.
- W2990713549 created "2019-12-05" @default.
- W2990713549 creator A5002779902 @default.
- W2990713549 creator A5010465278 @default.
- W2990713549 creator A5028001686 @default.
- W2990713549 creator A5038875139 @default.
- W2990713549 creator A5046645047 @default.
- W2990713549 creator A5081235526 @default.
- W2990713549 date "2019-11-01" @default.
- W2990713549 modified "2023-10-18" @default.
- W2990713549 title "ProbPFP: a multiple sequence alignment algorithm combining hidden Markov model optimized by particle swarm optimization with partition function" @default.
- W2990713549 cites W1567621547 @default.
- W2990713549 cites W1694876563 @default.
- W2990713549 cites W1888761835 @default.
- W2990713549 cites W1968967575 @default.
- W2990713549 cites W1970426162 @default.
- W2990713549 cites W1984675364 @default.
- W2990713549 cites W2025677664 @default.
- W2990713549 cites W2029372233 @default.
- W2990713549 cites W2042681550 @default.
- W2990713549 cites W2044164898 @default.
- W2990713549 cites W2050375132 @default.
- W2990713549 cites W2070948488 @default.
- W2990713549 cites W2071749306 @default.
- W2990713549 cites W2085292202 @default.
- W2990713549 cites W2090481108 @default.
- W2990713549 cites W2091384774 @default.
- W2990713549 cites W2102122585 @default.
- W2990713549 cites W2105862765 @default.
- W2990713549 cites W2106882534 @default.
- W2990713549 cites W2109607376 @default.
- W2990713549 cites W2113178788 @default.
- W2990713549 cites W2117223578 @default.
- W2990713549 cites W2120866529 @default.
- W2990713549 cites W2121691652 @default.
- W2990713549 cites W2123250224 @default.
- W2990713549 cites W2124462621 @default.
- W2990713549 cites W2127322768 @default.
- W2990713549 cites W2127774996 @default.
- W2990713549 cites W2132632499 @default.
- W2990713549 cites W2132926880 @default.
- W2990713549 cites W2134025725 @default.
- W2990713549 cites W2137084536 @default.
- W2990713549 cites W2140872496 @default.
- W2990713549 cites W2144362290 @default.
- W2990713549 cites W2162800127 @default.
- W2990713549 cites W2163860567 @default.
- W2990713549 cites W2170831688 @default.
- W2990713549 cites W2258865027 @default.
- W2990713549 cites W2505478609 @default.
- W2990713549 cites W2549247408 @default.
- W2990713549 cites W2570616637 @default.
- W2990713549 cites W2606314411 @default.
- W2990713549 cites W2614701255 @default.
- W2990713549 cites W2750245257 @default.
- W2990713549 cites W2776531206 @default.
- W2990713549 cites W2776616144 @default.
- W2990713549 cites W2782565892 @default.
- W2990713549 cites W2792194331 @default.
- W2990713549 cites W2792440843 @default.
- W2990713549 cites W2792533056 @default.
- W2990713549 cites W2795854627 @default.
- W2990713549 cites W2796725206 @default.
- W2990713549 cites W2796909069 @default.
- W2990713549 cites W2890855409 @default.
- W2990713549 cites W2895798038 @default.
- W2990713549 cites W2899288360 @default.
- W2990713549 cites W2905837927 @default.
- W2990713549 cites W2912597795 @default.
- W2990713549 cites W2930902918 @default.
- W2990713549 cites W2953208595 @default.
- W2990713549 cites W4245668478 @default.
- W2990713549 doi "https://doi.org/10.1186/s12859-019-3132-7" @default.
- W2990713549 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6876095" @default.
- W2990713549 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31760933" @default.
- W2990713549 hasPublicationYear "2019" @default.
- W2990713549 type Work @default.
- W2990713549 sameAs 2990713549 @default.
- W2990713549 citedByCount "11" @default.
- W2990713549 countsByYear W29907135492020 @default.
- W2990713549 countsByYear W29907135492021 @default.
- W2990713549 countsByYear W29907135492022 @default.
- W2990713549 countsByYear W29907135492023 @default.
- W2990713549 crossrefType "journal-article" @default.
- W2990713549 hasAuthorship W2990713549A5002779902 @default.
- W2990713549 hasAuthorship W2990713549A5010465278 @default.
- W2990713549 hasAuthorship W2990713549A5028001686 @default.
- W2990713549 hasAuthorship W2990713549A5038875139 @default.
- W2990713549 hasAuthorship W2990713549A5046645047 @default.
- W2990713549 hasAuthorship W2990713549A5081235526 @default.
- W2990713549 hasBestOaLocation W29907135491 @default.
- W2990713549 hasConcept C104317684 @default.
- W2990713549 hasConcept C11413529 @default.
- W2990713549 hasConcept C114614502 @default.
- W2990713549 hasConcept C119857082 @default.
- W2990713549 hasConcept C13280743 @default.
- W2990713549 hasConcept C153180895 @default.
- W2990713549 hasConcept C154945302 @default.
- W2990713549 hasConcept C167625842 @default.
- W2990713549 hasConcept C184898388 @default.