Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990718568> ?p ?o ?g. }
- W2990718568 abstract "Financial time series forecasting is, without a doubt, the top choice of computational intelligence for finance researchers from both academia and financial industry due to its broad implementation areas and substantial impact. Machine Learning (ML) researchers came up with various models and a vast number of studies have been published accordingly. As such, a significant amount of surveys exist covering ML for financial time series forecasting studies. Lately, Deep Learning (DL) models started appearing within the field, with results that significantly outperform traditional ML counterparts. Even though there is a growing interest in developing models for financial time series forecasting research, there is a lack of review papers that were solely focused on DL for finance. Hence, our motivation in this paper is to provide a comprehensive literature review on DL studies for financial time series forecasting implementations. We not only categorized the studies according to their intended forecasting implementation areas, such as index, forex, commodity forecasting, but also grouped them based on their DL model choices, such as Convolutional Neural Networks (CNNs), Deep Belief Networks (DBNs), Long-Short Term Memory (LSTM). We also tried to envision the future for the field by highlighting the possible setbacks and opportunities, so the interested researchers can benefit." @default.
- W2990718568 created "2019-12-05" @default.
- W2990718568 creator A5048947308 @default.
- W2990718568 creator A5050114655 @default.
- W2990718568 creator A5063733234 @default.
- W2990718568 date "2019-11-29" @default.
- W2990718568 modified "2023-09-27" @default.
- W2990718568 title "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019" @default.
- W2990718568 cites W104184427 @default.
- W2990718568 cites W1514244655 @default.
- W2990718568 cites W1522301498 @default.
- W2990718568 cites W1533861849 @default.
- W2990718568 cites W1541713280 @default.
- W2990718568 cites W1555686918 @default.
- W2990718568 cites W1575726819 @default.
- W2990718568 cites W1583797841 @default.
- W2990718568 cites W1608764981 @default.
- W2990718568 cites W1620339295 @default.
- W2990718568 cites W1626548344 @default.
- W2990718568 cites W1665214252 @default.
- W2990718568 cites W1670584477 @default.
- W2990718568 cites W1677182931 @default.
- W2990718568 cites W1689711448 @default.
- W2990718568 cites W1815076433 @default.
- W2990718568 cites W1840208138 @default.
- W2990718568 cites W1903029394 @default.
- W2990718568 cites W1922475389 @default.
- W2990718568 cites W1946342668 @default.
- W2990718568 cites W1964999599 @default.
- W2990718568 cites W1977033623 @default.
- W2990718568 cites W1977177161 @default.
- W2990718568 cites W19790595 @default.
- W2990718568 cites W1980103070 @default.
- W2990718568 cites W1980210743 @default.
- W2990718568 cites W1981655706 @default.
- W2990718568 cites W1983364832 @default.
- W2990718568 cites W1983941290 @default.
- W2990718568 cites W1989935508 @default.
- W2990718568 cites W1994616650 @default.
- W2990718568 cites W1997543377 @default.
- W2990718568 cites W2004463884 @default.
- W2990718568 cites W2007272376 @default.
- W2990718568 cites W2023573767 @default.
- W2990718568 cites W2025768430 @default.
- W2990718568 cites W2027506370 @default.
- W2990718568 cites W2036895384 @default.
- W2990718568 cites W2040255839 @default.
- W2990718568 cites W2063922127 @default.
- W2990718568 cites W2064675550 @default.
- W2990718568 cites W2074173695 @default.
- W2990718568 cites W2076063813 @default.
- W2990718568 cites W2086694651 @default.
- W2990718568 cites W2095328660 @default.
- W2990718568 cites W2097998348 @default.
- W2990718568 cites W2099866409 @default.
- W2990718568 cites W2101008160 @default.
- W2990718568 cites W2103496339 @default.
- W2990718568 cites W2106411961 @default.
- W2990718568 cites W2107878631 @default.
- W2990718568 cites W2116516955 @default.
- W2990718568 cites W2118067958 @default.
- W2990718568 cites W2121970262 @default.
- W2990718568 cites W2124295159 @default.
- W2990718568 cites W2125684070 @default.
- W2990718568 cites W2128792405 @default.
- W2990718568 cites W2130306094 @default.
- W2990718568 cites W2130325614 @default.
- W2990718568 cites W2136922672 @default.
- W2990718568 cites W2140071214 @default.
- W2990718568 cites W2143245714 @default.
- W2990718568 cites W2146502635 @default.
- W2990718568 cites W2150341604 @default.
- W2990718568 cites W2158663270 @default.
- W2990718568 cites W2165434809 @default.
- W2990718568 cites W2167088383 @default.
- W2990718568 cites W2168663745 @default.
- W2990718568 cites W2183406415 @default.
- W2990718568 cites W2184207288 @default.
- W2990718568 cites W2184481969 @default.
- W2990718568 cites W2195085701 @default.
- W2990718568 cites W2206682739 @default.
- W2990718568 cites W2209610041 @default.
- W2990718568 cites W2210974520 @default.
- W2990718568 cites W222543348 @default.
- W2990718568 cites W2271835578 @default.
- W2990718568 cites W2277648123 @default.
- W2990718568 cites W2283113811 @default.
- W2990718568 cites W2284153934 @default.
- W2990718568 cites W2295582178 @default.
- W2990718568 cites W2296438605 @default.
- W2990718568 cites W2342352817 @default.
- W2990718568 cites W2344279130 @default.
- W2990718568 cites W2344786740 @default.
- W2990718568 cites W2484410703 @default.
- W2990718568 cites W2510046892 @default.
- W2990718568 cites W2510651935 @default.
- W2990718568 cites W2511732382 @default.
- W2990718568 cites W2514451858 @default.
- W2990718568 cites W2525778437 @default.
- W2990718568 cites W2529087958 @default.