Matches in SemOpenAlex for { <https://semopenalex.org/work/W2990992575> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2990992575 endingPage "351" @default.
- W2990992575 startingPage "303" @default.
- W2990992575 abstract "We consider the adaptive influence maximization problem: given a network and a budget k, iteratively select k seeds in the network to maximize the expected number of adopters. In the full-adoption feedback model, after selecting each seed, the seed-picker observes all the resulting adoptions. In the myopic feedback model, the seed-picker only observes whether each neighbor of the chosen seed adopts. Motivated by the extreme success of greedy-based algorithms/heuristics for influence maximization, we propose the concept of greedy adaptivity gap, which compares the performance of the adaptive greedy algorithm to its non-adaptive counterpart. Our first result shows that, for submodular influence maximization, the adaptive greedy algorithm can perform up to a (1 − 1/e)-fraction worse than the non-adaptive greedy algorithm, and that this ratio is tight. More specifically, on one side we provide examples where the performance of the adaptive greedy algorithm is only a (1−1/e) fraction of the performance of the non-adaptive greedy algorithm in four settings: for both feedback models and both the independent cascade model and the linear threshold model. On the other side, we prove that in any submodular cascade, the adaptive greedy algorithm always outputs a (1 − 1/e)-approximation to the expected number of adoptions in the optimal non-adaptive seed choice. Our second result shows that, for the general submodular diffusion model with full-adoption feedback, the adaptive greedy algorithm can outperform the non-adaptive greedy algorithm by an unbounded factor. Finally, we propose a risk-free variant of the adaptive greedy algorithm that always performs no worse than the non-adaptive greedy algorithm." @default.
- W2990992575 created "2019-12-05" @default.
- W2990992575 creator A5006914411 @default.
- W2990992575 creator A5035538983 @default.
- W2990992575 creator A5069092681 @default.
- W2990992575 creator A5073672615 @default.
- W2990992575 date "2022-05-26" @default.
- W2990992575 modified "2023-09-27" @default.
- W2990992575 title "Adaptive Greedy versus Non-adaptive Greedy for Influence Maximization" @default.
- W2990992575 cites W136235603 @default.
- W2990992575 cites W1512602432 @default.
- W2990992575 cites W1654194294 @default.
- W2990992575 cites W1680189815 @default.
- W2990992575 cites W1970560785 @default.
- W2990992575 cites W1990570693 @default.
- W2990992575 cites W2000922801 @default.
- W2990992575 cites W2042123098 @default.
- W2990992575 cites W2056609785 @default.
- W2990992575 cites W2061820396 @default.
- W2990992575 cites W2108278206 @default.
- W2990992575 cites W2108858998 @default.
- W2990992575 cites W2132801025 @default.
- W2990992575 cites W2141403143 @default.
- W2990992575 cites W2166470254 @default.
- W2990992575 cites W2272988256 @default.
- W2990992575 cites W2792990871 @default.
- W2990992575 cites W2798654119 @default.
- W2990992575 cites W2807792147 @default.
- W2990992575 cites W2947396749 @default.
- W2990992575 cites W2950350855 @default.
- W2990992575 cites W2952263421 @default.
- W2990992575 cites W2955031884 @default.
- W2990992575 cites W2962773920 @default.
- W2990992575 cites W2962795549 @default.
- W2990992575 cites W2962961667 @default.
- W2990992575 cites W2963122331 @default.
- W2990992575 cites W3102204409 @default.
- W2990992575 cites W3104548765 @default.
- W2990992575 cites W3122324876 @default.
- W2990992575 doi "https://doi.org/10.1613/jair.1.12997" @default.
- W2990992575 hasPublicationYear "2022" @default.
- W2990992575 type Work @default.
- W2990992575 sameAs 2990992575 @default.
- W2990992575 citedByCount "4" @default.
- W2990992575 countsByYear W29909925752020 @default.
- W2990992575 countsByYear W29909925752023 @default.
- W2990992575 crossrefType "journal-article" @default.
- W2990992575 hasAuthorship W2990992575A5006914411 @default.
- W2990992575 hasAuthorship W2990992575A5035538983 @default.
- W2990992575 hasAuthorship W2990992575A5069092681 @default.
- W2990992575 hasAuthorship W2990992575A5073672615 @default.
- W2990992575 hasBestOaLocation W29909925751 @default.
- W2990992575 hasConcept C126221529 @default.
- W2990992575 hasConcept C126255220 @default.
- W2990992575 hasConcept C127705205 @default.
- W2990992575 hasConcept C178621042 @default.
- W2990992575 hasConcept C2776330181 @default.
- W2990992575 hasConcept C33923547 @default.
- W2990992575 hasConcept C41008148 @default.
- W2990992575 hasConcept C51823790 @default.
- W2990992575 hasConceptScore W2990992575C126221529 @default.
- W2990992575 hasConceptScore W2990992575C126255220 @default.
- W2990992575 hasConceptScore W2990992575C127705205 @default.
- W2990992575 hasConceptScore W2990992575C178621042 @default.
- W2990992575 hasConceptScore W2990992575C2776330181 @default.
- W2990992575 hasConceptScore W2990992575C33923547 @default.
- W2990992575 hasConceptScore W2990992575C41008148 @default.
- W2990992575 hasConceptScore W2990992575C51823790 @default.
- W2990992575 hasLocation W29909925751 @default.
- W2990992575 hasLocation W29909925752 @default.
- W2990992575 hasOpenAccess W2990992575 @default.
- W2990992575 hasPrimaryLocation W29909925751 @default.
- W2990992575 hasRelatedWork W1533846201 @default.
- W2990992575 hasRelatedWork W1552144985 @default.
- W2990992575 hasRelatedWork W2081359543 @default.
- W2990992575 hasRelatedWork W2246969754 @default.
- W2990992575 hasRelatedWork W2402949237 @default.
- W2990992575 hasRelatedWork W2949270856 @default.
- W2990992575 hasRelatedWork W2990992575 @default.
- W2990992575 hasRelatedWork W2997723230 @default.
- W2990992575 hasRelatedWork W3124980765 @default.
- W2990992575 hasRelatedWork W4229053050 @default.
- W2990992575 hasVolume "74" @default.
- W2990992575 isParatext "false" @default.
- W2990992575 isRetracted "false" @default.
- W2990992575 magId "2990992575" @default.
- W2990992575 workType "article" @default.