Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991004093> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2991004093 abstract "Intraocular anti-vascular endothelial growth factor (VEGF) therapy is the most significant treatment for vascular and exudative diseases of the retina. The highly detailed views of the retina provided by optical coherence tomography (OCT) scans play a significant role in the proper administration of anti-VEGF therapy and treatment monitoring. With increasing cases of visual impairment worldwide, computer-aided diagnosis of retinal pathologies is the need of the hour. Recent research on OCT-based automatic retinal disease detection has focused on using the state-of-the-art deep convolutional neural network (CNN) architectures due to their impressive performance in image classification tasks. However, these architectures are large in size and take significant time during testing, thus limiting their deployment to machines with ample memory and computation power. This paper proposes a novel deep learning based OCT image classifier, utilizing a small CNN architecture named as SimpleNet. It provides better classification accuracy with 800x fewer parameters, 350x less memory requirement, and is 50x faster during testing compared to state-of-the-art deep CNNs. Unlike other papers focusing on the prediction of specific diseases, we focus on broadly classifying OCT images into needing anti-VEGF therapy, needing simple routine care or normal healthy retinas." @default.
- W2991004093 created "2019-12-05" @default.
- W2991004093 creator A5024590689 @default.
- W2991004093 creator A5026754933 @default.
- W2991004093 creator A5038118044 @default.
- W2991004093 date "2019-01-01" @default.
- W2991004093 modified "2023-10-14" @default.
- W2991004093 title "Deep Learning Based Fully Automated Decision Making for Intravitreal Anti-VEGF Therapy" @default.
- W2991004093 cites W1968194636 @default.
- W2991004093 cites W2013569601 @default.
- W2991004093 cites W2013754472 @default.
- W2991004093 cites W2025923126 @default.
- W2991004093 cites W2048278407 @default.
- W2991004093 cites W2097117768 @default.
- W2991004093 cites W2145239202 @default.
- W2991004093 cites W2194775991 @default.
- W2991004093 cites W2589074029 @default.
- W2991004093 cites W2767404384 @default.
- W2991004093 cites W2773475231 @default.
- W2991004093 cites W2788633781 @default.
- W2991004093 cites W2809254203 @default.
- W2991004093 cites W2909546560 @default.
- W2991004093 cites W2963366965 @default.
- W2991004093 cites W3125937743 @default.
- W2991004093 doi "https://doi.org/10.1007/978-3-030-34872-4_17" @default.
- W2991004093 hasPublicationYear "2019" @default.
- W2991004093 type Work @default.
- W2991004093 sameAs 2991004093 @default.
- W2991004093 citedByCount "0" @default.
- W2991004093 crossrefType "book-chapter" @default.
- W2991004093 hasAuthorship W2991004093A5024590689 @default.
- W2991004093 hasAuthorship W2991004093A5026754933 @default.
- W2991004093 hasAuthorship W2991004093A5038118044 @default.
- W2991004093 hasConcept C108583219 @default.
- W2991004093 hasConcept C115961682 @default.
- W2991004093 hasConcept C118487528 @default.
- W2991004093 hasConcept C119857082 @default.
- W2991004093 hasConcept C127413603 @default.
- W2991004093 hasConcept C154945302 @default.
- W2991004093 hasConcept C169760540 @default.
- W2991004093 hasConcept C188198153 @default.
- W2991004093 hasConcept C2777093970 @default.
- W2991004093 hasConcept C2778818243 @default.
- W2991004093 hasConcept C41008148 @default.
- W2991004093 hasConcept C71924100 @default.
- W2991004093 hasConcept C75294576 @default.
- W2991004093 hasConcept C78519656 @default.
- W2991004093 hasConcept C81363708 @default.
- W2991004093 hasConcept C86803240 @default.
- W2991004093 hasConcept C95623464 @default.
- W2991004093 hasConceptScore W2991004093C108583219 @default.
- W2991004093 hasConceptScore W2991004093C115961682 @default.
- W2991004093 hasConceptScore W2991004093C118487528 @default.
- W2991004093 hasConceptScore W2991004093C119857082 @default.
- W2991004093 hasConceptScore W2991004093C127413603 @default.
- W2991004093 hasConceptScore W2991004093C154945302 @default.
- W2991004093 hasConceptScore W2991004093C169760540 @default.
- W2991004093 hasConceptScore W2991004093C188198153 @default.
- W2991004093 hasConceptScore W2991004093C2777093970 @default.
- W2991004093 hasConceptScore W2991004093C2778818243 @default.
- W2991004093 hasConceptScore W2991004093C41008148 @default.
- W2991004093 hasConceptScore W2991004093C71924100 @default.
- W2991004093 hasConceptScore W2991004093C75294576 @default.
- W2991004093 hasConceptScore W2991004093C78519656 @default.
- W2991004093 hasConceptScore W2991004093C81363708 @default.
- W2991004093 hasConceptScore W2991004093C86803240 @default.
- W2991004093 hasConceptScore W2991004093C95623464 @default.
- W2991004093 hasLocation W29910040931 @default.
- W2991004093 hasOpenAccess W2991004093 @default.
- W2991004093 hasPrimaryLocation W29910040931 @default.
- W2991004093 hasRelatedWork W2570873234 @default.
- W2991004093 hasRelatedWork W2792942726 @default.
- W2991004093 hasRelatedWork W2920938200 @default.
- W2991004093 hasRelatedWork W3014453037 @default.
- W2991004093 hasRelatedWork W3111570720 @default.
- W2991004093 hasRelatedWork W3202164739 @default.
- W2991004093 hasRelatedWork W4226000081 @default.
- W2991004093 hasRelatedWork W4281382123 @default.
- W2991004093 hasRelatedWork W4281780675 @default.
- W2991004093 hasRelatedWork W4285815555 @default.
- W2991004093 isParatext "false" @default.
- W2991004093 isRetracted "false" @default.
- W2991004093 magId "2991004093" @default.
- W2991004093 workType "book-chapter" @default.