Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991006005> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2991006005 abstract "Breast cancer is the most prevailing type of cancer responsible for a large number of deaths every year. However, at the same time, this is largely a curable type of cancer if identified at initial stages. With major advances in research in the areas of image processing, data mining and clustering and machine learning, a more precise prognosis and prediction of breast cancer are possible at earlier stages. A fuzzy clustering model is a popular model used across various researches in image processing to predict the malignancy of breast tumor. The partitional clustering method finds its strength in its fuzzy partitioning such that a data point may belong to different classes with varying degrees of membership (ranging between 0 and 1), which is less rigid as compared to an older and still popular k-means clustering algorithm. The current article attempts to hybridize the fuzzy C-means with the cohort intelligence (CI) algorithm to optimize cluster formation. CI is a robust optimization metaheuristic belonging to the class of socio-inspired optimizers (Kumar M, Kulkarni A Socio-cultural inspired metaheuristics, pp 1–28, Springer International Publishing, 2019 [22]), motivated from self-adapting behavior of candidates in a cohort or a group. CI is typically characterized by its simple algorithmic nature, robust structure and a faster convergence rate, hence gaining popularity. This novel hybridized data clustering algorithm fuzzy-CI imitates the soft clustering and communal learning attitude of clusters and candidates. The hybridized method of fuzzy-CI is validated by testing it on the Breast Cancer Wisconsin (Diagnostic) Dataset. The results validate that the hybridized version exhibits better cluster formation in comparison with the non-hybridized version." @default.
- W2991006005 created "2019-12-05" @default.
- W2991006005 creator A5058475882 @default.
- W2991006005 creator A5080691948 @default.
- W2991006005 creator A5087823302 @default.
- W2991006005 date "2019-11-30" @default.
- W2991006005 modified "2023-10-02" @default.
- W2991006005 title "A Hybridized Data Clustering for Breast Cancer Prognosis and Risk Exposure Using Fuzzy C-means and Cohort Intelligence" @default.
- W2991006005 cites W1662225747 @default.
- W2991006005 cites W171747238 @default.
- W2991006005 cites W1978380673 @default.
- W2991006005 cites W1992419399 @default.
- W2991006005 cites W1995450389 @default.
- W2991006005 cites W2011326672 @default.
- W2991006005 cites W2048701123 @default.
- W2991006005 cites W2079543984 @default.
- W2991006005 cites W2102218344 @default.
- W2991006005 cites W2107903523 @default.
- W2991006005 cites W2111547563 @default.
- W2991006005 cites W2132918796 @default.
- W2991006005 cites W2156922145 @default.
- W2991006005 cites W2158184062 @default.
- W2991006005 cites W2370924594 @default.
- W2991006005 cites W2397302508 @default.
- W2991006005 cites W2436634098 @default.
- W2991006005 cites W2621586148 @default.
- W2991006005 cites W2889646458 @default.
- W2991006005 cites W2925826544 @default.
- W2991006005 doi "https://doi.org/10.1007/978-981-15-0994-0_7" @default.
- W2991006005 hasPublicationYear "2019" @default.
- W2991006005 type Work @default.
- W2991006005 sameAs 2991006005 @default.
- W2991006005 citedByCount "2" @default.
- W2991006005 countsByYear W29910060052022 @default.
- W2991006005 countsByYear W29910060052023 @default.
- W2991006005 crossrefType "book-chapter" @default.
- W2991006005 hasAuthorship W2991006005A5058475882 @default.
- W2991006005 hasAuthorship W2991006005A5080691948 @default.
- W2991006005 hasAuthorship W2991006005A5087823302 @default.
- W2991006005 hasConcept C109718341 @default.
- W2991006005 hasConcept C119857082 @default.
- W2991006005 hasConcept C121608353 @default.
- W2991006005 hasConcept C124101348 @default.
- W2991006005 hasConcept C126322002 @default.
- W2991006005 hasConcept C154945302 @default.
- W2991006005 hasConcept C164866538 @default.
- W2991006005 hasConcept C17212007 @default.
- W2991006005 hasConcept C199360897 @default.
- W2991006005 hasConcept C41008148 @default.
- W2991006005 hasConcept C530470458 @default.
- W2991006005 hasConcept C58166 @default.
- W2991006005 hasConcept C71924100 @default.
- W2991006005 hasConcept C73555534 @default.
- W2991006005 hasConceptScore W2991006005C109718341 @default.
- W2991006005 hasConceptScore W2991006005C119857082 @default.
- W2991006005 hasConceptScore W2991006005C121608353 @default.
- W2991006005 hasConceptScore W2991006005C124101348 @default.
- W2991006005 hasConceptScore W2991006005C126322002 @default.
- W2991006005 hasConceptScore W2991006005C154945302 @default.
- W2991006005 hasConceptScore W2991006005C164866538 @default.
- W2991006005 hasConceptScore W2991006005C17212007 @default.
- W2991006005 hasConceptScore W2991006005C199360897 @default.
- W2991006005 hasConceptScore W2991006005C41008148 @default.
- W2991006005 hasConceptScore W2991006005C530470458 @default.
- W2991006005 hasConceptScore W2991006005C58166 @default.
- W2991006005 hasConceptScore W2991006005C71924100 @default.
- W2991006005 hasConceptScore W2991006005C73555534 @default.
- W2991006005 hasLocation W29910060051 @default.
- W2991006005 hasOpenAccess W2991006005 @default.
- W2991006005 hasPrimaryLocation W29910060051 @default.
- W2991006005 hasRelatedWork W10152071 @default.
- W2991006005 hasRelatedWork W10356211 @default.
- W2991006005 hasRelatedWork W12189470 @default.
- W2991006005 hasRelatedWork W13382361 @default.
- W2991006005 hasRelatedWork W14725152 @default.
- W2991006005 hasRelatedWork W248911 @default.
- W2991006005 hasRelatedWork W36490 @default.
- W2991006005 hasRelatedWork W4173819 @default.
- W2991006005 hasRelatedWork W5405742 @default.
- W2991006005 hasRelatedWork W6984603 @default.
- W2991006005 isParatext "false" @default.
- W2991006005 isRetracted "false" @default.
- W2991006005 magId "2991006005" @default.
- W2991006005 workType "book-chapter" @default.