Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991023756> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2991023756 abstract "The ultrasound images contain significant concentration of speckle noise. Speckles denoising is of prime importance in order to make the correct diagnosis. This paper provides an orthognalization based technique with projection in the frequency domain that has proved to be effective in speckles denoising. The performance of proposed scheme has been verified on both simulated and real ultrasound images. A comparative analysis between proposed scheme and benchmark schemes such as Orthogonal regular, Frost and Total Variation Filtering (TVF) is presented in this research. The proposed algorithm starts with segmenting a noise corrupted ultrasound image into small sized blocks in an overlapping manner. These blocks contribute in creation of an overall covariance matrix. Fourier transform of the overall covariance matrix is taken to project the image into frequency domain. A subset of the orthonormal vectors are secured by applying the orthogonalization scheme, and a features matrix is formed that is used to clean the speckle noise. The outcomes show that proposed approach is more effective in speckle denoising as compared to benchmark schemes with reference to Signal to Noise Ratio (SNR), Contrast to Noise Ratio (CNR) and Peak Signal to Noise Ratio (PSNR). The aforementioned parameters are of significant importance in assessing performance of any despeckling scheme." @default.
- W2991023756 created "2019-12-05" @default.
- W2991023756 creator A5031402230 @default.
- W2991023756 creator A5045574769 @default.
- W2991023756 creator A5088907765 @default.
- W2991023756 creator A5091897921 @default.
- W2991023756 date "2019-10-01" @default.
- W2991023756 modified "2023-09-24" @default.
- W2991023756 title "Ultrasound Image Denoising Using Orthogonal Decomposition in Frequency Domain" @default.
- W2991023756 cites W1965507236 @default.
- W2991023756 cites W1967253803 @default.
- W2991023756 cites W1973207880 @default.
- W2991023756 cites W2001605855 @default.
- W2991023756 cites W2016778695 @default.
- W2991023756 cites W2049909233 @default.
- W2991023756 cites W2052087587 @default.
- W2991023756 cites W2061800457 @default.
- W2991023756 cites W2103559027 @default.
- W2991023756 cites W2104763670 @default.
- W2991023756 cites W2117294245 @default.
- W2991023756 cites W2150134853 @default.
- W2991023756 cites W2156706485 @default.
- W2991023756 cites W2171369743 @default.
- W2991023756 cites W2266495241 @default.
- W2991023756 cites W2321735405 @default.
- W2991023756 cites W2566163677 @default.
- W2991023756 cites W2763614502 @default.
- W2991023756 cites W2764175721 @default.
- W2991023756 cites W2795334275 @default.
- W2991023756 cites W2889465013 @default.
- W2991023756 cites W2895111334 @default.
- W2991023756 cites W2898855422 @default.
- W2991023756 doi "https://doi.org/10.1109/icsengt.2019.8906441" @default.
- W2991023756 hasPublicationYear "2019" @default.
- W2991023756 type Work @default.
- W2991023756 sameAs 2991023756 @default.
- W2991023756 citedByCount "1" @default.
- W2991023756 countsByYear W29910237562021 @default.
- W2991023756 crossrefType "proceedings-article" @default.
- W2991023756 hasAuthorship W2991023756A5031402230 @default.
- W2991023756 hasAuthorship W2991023756A5045574769 @default.
- W2991023756 hasAuthorship W2991023756A5088907765 @default.
- W2991023756 hasAuthorship W2991023756A5091897921 @default.
- W2991023756 hasConcept C102290492 @default.
- W2991023756 hasConcept C11413529 @default.
- W2991023756 hasConcept C115961682 @default.
- W2991023756 hasConcept C13944312 @default.
- W2991023756 hasConcept C153180895 @default.
- W2991023756 hasConcept C154945302 @default.
- W2991023756 hasConcept C163294075 @default.
- W2991023756 hasConcept C180940675 @default.
- W2991023756 hasConcept C19118579 @default.
- W2991023756 hasConcept C31972630 @default.
- W2991023756 hasConcept C33923547 @default.
- W2991023756 hasConcept C41008148 @default.
- W2991023756 hasConcept C76155785 @default.
- W2991023756 hasConcept C99498987 @default.
- W2991023756 hasConceptScore W2991023756C102290492 @default.
- W2991023756 hasConceptScore W2991023756C11413529 @default.
- W2991023756 hasConceptScore W2991023756C115961682 @default.
- W2991023756 hasConceptScore W2991023756C13944312 @default.
- W2991023756 hasConceptScore W2991023756C153180895 @default.
- W2991023756 hasConceptScore W2991023756C154945302 @default.
- W2991023756 hasConceptScore W2991023756C163294075 @default.
- W2991023756 hasConceptScore W2991023756C180940675 @default.
- W2991023756 hasConceptScore W2991023756C19118579 @default.
- W2991023756 hasConceptScore W2991023756C31972630 @default.
- W2991023756 hasConceptScore W2991023756C33923547 @default.
- W2991023756 hasConceptScore W2991023756C41008148 @default.
- W2991023756 hasConceptScore W2991023756C76155785 @default.
- W2991023756 hasConceptScore W2991023756C99498987 @default.
- W2991023756 hasLocation W29910237561 @default.
- W2991023756 hasOpenAccess W2991023756 @default.
- W2991023756 hasPrimaryLocation W29910237561 @default.
- W2991023756 hasRelatedWork W1925889668 @default.
- W2991023756 hasRelatedWork W1943627215 @default.
- W2991023756 hasRelatedWork W1975965673 @default.
- W2991023756 hasRelatedWork W1998044330 @default.
- W2991023756 hasRelatedWork W2136597856 @default.
- W2991023756 hasRelatedWork W2342881418 @default.
- W2991023756 hasRelatedWork W2361507913 @default.
- W2991023756 hasRelatedWork W2612576381 @default.
- W2991023756 hasRelatedWork W3023926458 @default.
- W2991023756 hasRelatedWork W4200155497 @default.
- W2991023756 isParatext "false" @default.
- W2991023756 isRetracted "false" @default.
- W2991023756 magId "2991023756" @default.
- W2991023756 workType "article" @default.