Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991036652> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2991036652 endingPage "1077" @default.
- W2991036652 startingPage "1071" @default.
- W2991036652 abstract "We propose a heartbeat-based end-to-end classification of arrhythmias to improve the classification performance for supraventricular ectopic beat (SVEB) and ventricular ectopic beat (VEB).The ECG signals were preprocessed by heartbeat segmentation and heartbeat alignment. An arrhythmia classifier was constructed based on convolutional neural network, and the proposed loss function was used to train the classifier.The proposed algorithm was verified on MIT-BIH arrhythmia database. The AUC of the proposed loss function for SVEB and VEB reached 0.77 and 0.98, respectively. With the first 5 min segment as the local data, the diagnostic sensitivities for SVEB and VEB were 78.28% and 98.88%, respectively; when 0, 50, 100, and 150 samples were used as the local data, the diagnostic sensitivities for SVEB and VEB reached 82.25% and 93.23%, respectively.The proposed method effectively reduces the negative impact of class-imbalance and improves the diagnostic sensitivities for SVEB and VEB, and thus provides a new solution for automatic arrhythmia classification." @default.
- W2991036652 created "2019-12-05" @default.
- W2991036652 creator A5029389476 @default.
- W2991036652 creator A5059665804 @default.
- W2991036652 date "2019-09-30" @default.
- W2991036652 modified "2023-09-23" @default.
- W2991036652 title "[Heartbeat-based end-to-end classification of arrhythmias]." @default.
- W2991036652 cites W1534106694 @default.
- W2991036652 cites W1577323721 @default.
- W2991036652 cites W1598625385 @default.
- W2991036652 cites W1988183757 @default.
- W2991036652 cites W2054218460 @default.
- W2991036652 cites W2095409369 @default.
- W2991036652 cites W2101331317 @default.
- W2991036652 cites W2103308415 @default.
- W2991036652 cites W2132300419 @default.
- W2991036652 cites W2159015910 @default.
- W2991036652 cites W2162273778 @default.
- W2991036652 cites W2162693370 @default.
- W2991036652 cites W2253139781 @default.
- W2991036652 cites W2291961022 @default.
- W2991036652 cites W2526491400 @default.
- W2991036652 cites W2563345313 @default.
- W2991036652 cites W2761506065 @default.
- W2991036652 cites W2798098034 @default.
- W2991036652 cites W2891342985 @default.
- W2991036652 cites W3146323581 @default.
- W2991036652 doi "https://doi.org/10.12122/j.issn.1673-4254.2019.09.11" @default.
- W2991036652 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6881729" @default.
- W2991036652 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31640959" @default.
- W2991036652 hasPublicationYear "2019" @default.
- W2991036652 type Work @default.
- W2991036652 sameAs 2991036652 @default.
- W2991036652 citedByCount "0" @default.
- W2991036652 crossrefType "journal-article" @default.
- W2991036652 hasAuthorship W2991036652A5029389476 @default.
- W2991036652 hasAuthorship W2991036652A5059665804 @default.
- W2991036652 hasConcept C121332964 @default.
- W2991036652 hasConcept C13852961 @default.
- W2991036652 hasConcept C153180895 @default.
- W2991036652 hasConcept C154945302 @default.
- W2991036652 hasConcept C189809214 @default.
- W2991036652 hasConcept C24890656 @default.
- W2991036652 hasConcept C38652104 @default.
- W2991036652 hasConcept C41008148 @default.
- W2991036652 hasConcept C81363708 @default.
- W2991036652 hasConcept C89600930 @default.
- W2991036652 hasConcept C95623464 @default.
- W2991036652 hasConceptScore W2991036652C121332964 @default.
- W2991036652 hasConceptScore W2991036652C13852961 @default.
- W2991036652 hasConceptScore W2991036652C153180895 @default.
- W2991036652 hasConceptScore W2991036652C154945302 @default.
- W2991036652 hasConceptScore W2991036652C189809214 @default.
- W2991036652 hasConceptScore W2991036652C24890656 @default.
- W2991036652 hasConceptScore W2991036652C38652104 @default.
- W2991036652 hasConceptScore W2991036652C41008148 @default.
- W2991036652 hasConceptScore W2991036652C81363708 @default.
- W2991036652 hasConceptScore W2991036652C89600930 @default.
- W2991036652 hasConceptScore W2991036652C95623464 @default.
- W2991036652 hasIssue "9" @default.
- W2991036652 hasLocation W29910366521 @default.
- W2991036652 hasOpenAccess W2991036652 @default.
- W2991036652 hasPrimaryLocation W29910366521 @default.
- W2991036652 hasRelatedWork W2175746458 @default.
- W2991036652 hasRelatedWork W2732542196 @default.
- W2991036652 hasRelatedWork W2767651786 @default.
- W2991036652 hasRelatedWork W2769435486 @default.
- W2991036652 hasRelatedWork W2795329967 @default.
- W2991036652 hasRelatedWork W2973133528 @default.
- W2991036652 hasRelatedWork W3095523211 @default.
- W2991036652 hasRelatedWork W3102253946 @default.
- W2991036652 hasRelatedWork W4200528772 @default.
- W2991036652 hasRelatedWork W4225852842 @default.
- W2991036652 hasVolume "39" @default.
- W2991036652 isParatext "false" @default.
- W2991036652 isRetracted "false" @default.
- W2991036652 magId "2991036652" @default.
- W2991036652 workType "article" @default.