Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991064012> ?p ?o ?g. }
- W2991064012 abstract "Recent research indicate a surge in the use of machine learning and artificial intelligence to compliment the processes of human visual perception. In particular, applying closeness measures of digital objects is of great significance in the attempts to account for the correspondence between digitized sky objects and some human identifiable object. The scoring of computerized objects can be based on testing a combination of well-known features humans use for visual perception, with a consideration that the human visual cognition system is well tailored for discriminating structural information from visual objects. This way, benchmark tests can be used to compute some proximity of detected objects to the specified object’s reality. Apart from producing outputs for use in the predictions, object similarity tests can also act as a mechanism for quality assessment process for the results of computer object detectors. One assumption here is that similar objects cannot qualify as perfect matches to their real objects but may contain some acceptable divergence in their closeness. In this paper, algorithms for extracting shape, color and texture information in visual sky (specific to traditional weather lore) objects are investigated as candidates for visual sky objects benchmarking, and their performances compared using a collection of positive/negative instances of visual sky objects. The rationale for testing both positive/negative instances was due to the fact that while the sky objects detectors can be expected to generate positive detections, the number of false positives detectable should be negligible." @default.
- W2991064012 created "2019-12-05" @default.
- W2991064012 creator A5023458344 @default.
- W2991064012 creator A5085899058 @default.
- W2991064012 date "2019-10-01" @default.
- W2991064012 modified "2023-10-14" @default.
- W2991064012 title "Complementary Methods for Human Visual Perception of Visual Weather Lore Sky Objects Using Machine Learning Methods" @default.
- W2991064012 cites W1500750848 @default.
- W2991064012 cites W1575999396 @default.
- W2991064012 cites W1963842873 @default.
- W2991064012 cites W1968443071 @default.
- W2991064012 cites W1975961587 @default.
- W2991064012 cites W1986482242 @default.
- W2991064012 cites W2027892653 @default.
- W2991064012 cites W2044465660 @default.
- W2991064012 cites W2051007085 @default.
- W2991064012 cites W2084127805 @default.
- W2991064012 cites W2093658728 @default.
- W2991064012 cites W2101552841 @default.
- W2991064012 cites W2103704443 @default.
- W2991064012 cites W2106300334 @default.
- W2991064012 cites W2109464092 @default.
- W2991064012 cites W2115814941 @default.
- W2991064012 cites W2124101593 @default.
- W2991064012 cites W2129812935 @default.
- W2991064012 cites W2131273085 @default.
- W2991064012 cites W2134180252 @default.
- W2991064012 cites W2134257652 @default.
- W2991064012 cites W2144620524 @default.
- W2991064012 cites W2152799691 @default.
- W2991064012 cites W2154899272 @default.
- W2991064012 cites W2166672562 @default.
- W2991064012 cites W2171784533 @default.
- W2991064012 cites W2171928062 @default.
- W2991064012 cites W2187098286 @default.
- W2991064012 cites W2188635677 @default.
- W2991064012 cites W2189244297 @default.
- W2991064012 cites W2309783448 @default.
- W2991064012 cites W2323218715 @default.
- W2991064012 cites W2341791973 @default.
- W2991064012 cites W2345339656 @default.
- W2991064012 cites W2373323604 @default.
- W2991064012 cites W2472057509 @default.
- W2991064012 cites W2550694175 @default.
- W2991064012 cites W2555980337 @default.
- W2991064012 cites W2582336686 @default.
- W2991064012 cites W2747966077 @default.
- W2991064012 cites W2782609022 @default.
- W2991064012 cites W2790137947 @default.
- W2991064012 cites W3046642905 @default.
- W2991064012 cites W9958333 @default.
- W2991064012 cites W2183843464 @default.
- W2991064012 cites W2184962015 @default.
- W2991064012 cites W2612223803 @default.
- W2991064012 doi "https://doi.org/10.1109/oi.2019.8908176" @default.
- W2991064012 hasPublicationYear "2019" @default.
- W2991064012 type Work @default.
- W2991064012 sameAs 2991064012 @default.
- W2991064012 citedByCount "0" @default.
- W2991064012 crossrefType "proceedings-article" @default.
- W2991064012 hasAuthorship W2991064012A5023458344 @default.
- W2991064012 hasAuthorship W2991064012A5085899058 @default.
- W2991064012 hasConcept C103278499 @default.
- W2991064012 hasConcept C111919701 @default.
- W2991064012 hasConcept C115961682 @default.
- W2991064012 hasConcept C121332964 @default.
- W2991064012 hasConcept C134306372 @default.
- W2991064012 hasConcept C153180895 @default.
- W2991064012 hasConcept C154945302 @default.
- W2991064012 hasConcept C15744967 @default.
- W2991064012 hasConcept C160086991 @default.
- W2991064012 hasConcept C169760540 @default.
- W2991064012 hasConcept C178253425 @default.
- W2991064012 hasConcept C26760741 @default.
- W2991064012 hasConcept C2776151529 @default.
- W2991064012 hasConcept C2779545769 @default.
- W2991064012 hasConcept C2781238097 @default.
- W2991064012 hasConcept C31972630 @default.
- W2991064012 hasConcept C33923547 @default.
- W2991064012 hasConcept C41008148 @default.
- W2991064012 hasConcept C44870925 @default.
- W2991064012 hasConcept C64869954 @default.
- W2991064012 hasConcept C73329638 @default.
- W2991064012 hasConcept C98045186 @default.
- W2991064012 hasConceptScore W2991064012C103278499 @default.
- W2991064012 hasConceptScore W2991064012C111919701 @default.
- W2991064012 hasConceptScore W2991064012C115961682 @default.
- W2991064012 hasConceptScore W2991064012C121332964 @default.
- W2991064012 hasConceptScore W2991064012C134306372 @default.
- W2991064012 hasConceptScore W2991064012C153180895 @default.
- W2991064012 hasConceptScore W2991064012C154945302 @default.
- W2991064012 hasConceptScore W2991064012C15744967 @default.
- W2991064012 hasConceptScore W2991064012C160086991 @default.
- W2991064012 hasConceptScore W2991064012C169760540 @default.
- W2991064012 hasConceptScore W2991064012C178253425 @default.
- W2991064012 hasConceptScore W2991064012C26760741 @default.
- W2991064012 hasConceptScore W2991064012C2776151529 @default.
- W2991064012 hasConceptScore W2991064012C2779545769 @default.
- W2991064012 hasConceptScore W2991064012C2781238097 @default.
- W2991064012 hasConceptScore W2991064012C31972630 @default.