Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991084430> ?p ?o ?g. }
- W2991084430 abstract "Author(s): Brown-Altvater, Florian | Advisor(s): Neaton, Jeffrey B; Geissler, Phillip L | Abstract: In this dissertation we present first principles electronic structure calculations of acene solids, achieving better understanding of their electronic and vibrational properties relevant to their optoelectronic function. The family of acene molecular crystals serves as a testbed for broader classes of organic crystalline semiconductors, which have come under increasing focus for their many favorable optoelectronic properties. Among them are relative ease of processing, strong and tunable absorption, and charge carrier mobilities sufficiently high for applications. Despite numerous computational and experimental efforts, the details of the underlying mechanisms of these optoelectronic processes are still actively disputed, especially concerning the role of electron-phonon coupling and its impact on the acene electric structure at finite temperatures. To further improve the efficiency of these systems, and to develop new materials that can overcome existing challenges, better understanding of the underlying principles and structure-function relationships that determine acene properties is thus needed.Here, we calculate the charged and neutral electronic excitations of the acene crystal series within many-body perturbation theory (MBPT), based on van der Waals (vdW)–corrected density functional theory (DFT). We compare the performance of various functionals and vdW corrections in predicting the experimental lattice parameters and investigate the sensitivity of excited states to these structural parameters. Generally, low-lying charged and neutral excitations are well described by the MBPT methods used here, provided that optimized geometries close to experiment are used. The inclusion of vdW interactions to account for the weak intermolecular interactions in molecular crystals is thus found to be a prerequisite for the predictive and accurate calculation of excited state energies in these systems.To investigate the effect of vibrational coupling at zero and finite temperatures in organic crystals, we calculate the phonon band structure and electron-phonon contributions to the electron self-energy for the case of the naphthalene crystal. We first provide a comprehensive analysis of the computed phonon band structure, comparing to neutron diffraction data. Again, vdW corrections are necessary to obtain phonon frequencies from DFT calculations that are in good agreement with experiment. Based on these results, we compute the electron-phonon self-energy in naphthalene using vdW-corrected DFT and MBPT to lowest order. This self-energy provides the contribution of phonons to the renormalization of band structure energies and to the scattering lifetimes of electronic states. The resulting renormalized band gap at room temperature, and the temperature-dependent mobilities of electron and hole charge carriers are in good agreement with experimental values. Finally, we explore an eigenvalue–self-consistent computational scheme for the electron-phonon self-energy that leads to the prediction of strong satellite bands in the quasiparticle band structure.The methods presented in this dissertation are general and our conclusions are applicable to other molecular crystals, thus providing a template for future predictive calculations of optoelectronic properties of acenes and related systems, in which both structures and excited states are calculated entirely from first principles." @default.
- W2991084430 created "2019-12-05" @default.
- W2991084430 creator A5002951375 @default.
- W2991084430 date "2019-01-01" @default.
- W2991084430 modified "2023-09-24" @default.
- W2991084430 title "Electronic excitations, phonons, and electron-phonon coupling in acenes" @default.
- W2991084430 cites W1550186202 @default.
- W2991084430 cites W1615960000 @default.
- W2991084430 cites W1625931829 @default.
- W2991084430 cites W1762205755 @default.
- W2991084430 cites W1784477143 @default.
- W2991084430 cites W1964756769 @default.
- W2991084430 cites W1965589334 @default.
- W2991084430 cites W1966418449 @default.
- W2991084430 cites W1966810914 @default.
- W2991084430 cites W1967282001 @default.
- W2991084430 cites W1969380476 @default.
- W2991084430 cites W1969616824 @default.
- W2991084430 cites W1970623278 @default.
- W2991084430 cites W1970994580 @default.
- W2991084430 cites W1971940565 @default.
- W2991084430 cites W1972031885 @default.
- W2991084430 cites W1972363204 @default.
- W2991084430 cites W1972997909 @default.
- W2991084430 cites W1974182654 @default.
- W2991084430 cites W1977675826 @default.
- W2991084430 cites W1979544533 @default.
- W2991084430 cites W1981368803 @default.
- W2991084430 cites W1982595063 @default.
- W2991084430 cites W1983029414 @default.
- W2991084430 cites W1983462489 @default.
- W2991084430 cites W1984668415 @default.
- W2991084430 cites W1984880144 @default.
- W2991084430 cites W1987133751 @default.
- W2991084430 cites W1987329392 @default.
- W2991084430 cites W1989189515 @default.
- W2991084430 cites W1990196429 @default.
- W2991084430 cites W1990294962 @default.
- W2991084430 cites W1990523053 @default.
- W2991084430 cites W1991321949 @default.
- W2991084430 cites W1993256284 @default.
- W2991084430 cites W1993509513 @default.
- W2991084430 cites W1993720747 @default.
- W2991084430 cites W1994638126 @default.
- W2991084430 cites W1997761105 @default.
- W2991084430 cites W1997798558 @default.
- W2991084430 cites W1998001096 @default.
- W2991084430 cites W1998254538 @default.
- W2991084430 cites W1998681432 @default.
- W2991084430 cites W1999559314 @default.
- W2991084430 cites W1999708989 @default.
- W2991084430 cites W2000080329 @default.
- W2991084430 cites W2000736691 @default.
- W2991084430 cites W2001508813 @default.
- W2991084430 cites W2002636047 @default.
- W2991084430 cites W2003162555 @default.
- W2991084430 cites W2003193361 @default.
- W2991084430 cites W2004149205 @default.
- W2991084430 cites W2005228497 @default.
- W2991084430 cites W2009239570 @default.
- W2991084430 cites W2009415341 @default.
- W2991084430 cites W2010639876 @default.
- W2991084430 cites W2011327487 @default.
- W2991084430 cites W2012207867 @default.
- W2991084430 cites W2014094922 @default.
- W2991084430 cites W2014206492 @default.
- W2991084430 cites W2014490336 @default.
- W2991084430 cites W2014750838 @default.
- W2991084430 cites W2016168218 @default.
- W2991084430 cites W2016403501 @default.
- W2991084430 cites W2016928143 @default.
- W2991084430 cites W2017579972 @default.
- W2991084430 cites W2017663485 @default.
- W2991084430 cites W2017736831 @default.
- W2991084430 cites W2018471238 @default.
- W2991084430 cites W2021601097 @default.
- W2991084430 cites W2021898818 @default.
- W2991084430 cites W2024790810 @default.
- W2991084430 cites W2025419032 @default.
- W2991084430 cites W2026670903 @default.
- W2991084430 cites W2026936385 @default.
- W2991084430 cites W2027842915 @default.
- W2991084430 cites W2031106048 @default.
- W2991084430 cites W2034012751 @default.
- W2991084430 cites W2034331582 @default.
- W2991084430 cites W2034610445 @default.
- W2991084430 cites W2035819411 @default.
- W2991084430 cites W2036113194 @default.
- W2991084430 cites W2036125498 @default.
- W2991084430 cites W2036860562 @default.
- W2991084430 cites W2040394151 @default.
- W2991084430 cites W2040971575 @default.
- W2991084430 cites W2041860446 @default.
- W2991084430 cites W2045462689 @default.
- W2991084430 cites W2048365414 @default.
- W2991084430 cites W2049575788 @default.
- W2991084430 cites W2053347844 @default.
- W2991084430 cites W2053499780 @default.
- W2991084430 cites W2053502834 @default.
- W2991084430 cites W2055036616 @default.