Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991093009> ?p ?o ?g. }
- W2991093009 endingPage "201" @default.
- W2991093009 startingPage "169" @default.
- W2991093009 abstract "Object detection from RGB images is a long-standing problem in image processing and computer vision. It has applications in various domains including robotics, surveillance, human–computer interaction, and medical diagnosis. With the availability of low- cost 3D scanners, a large number of RGB-D object detection approaches have been proposed in the past years. This chapter provides a comprehensive survey of the recent developments in this field. We structure the chapter into two parts; the focus of the first part is on techniques that are based on hand-crafted features combined with machine learning algorithms. The focus of the second part is on the more recent work, which is based on deep learning. Deep learning techniques, coupled with the availability of large training datasets, have now revolutionized the field of computer vision, including RGB-D object detection, achieving an unprecedented level of performance. We survey the key contributions, summarize the most commonly used pipelines, discuss their benefits and limitations and highlight some important directions for future research." @default.
- W2991093009 created "2019-12-05" @default.
- W2991093009 creator A5002077138 @default.
- W2991093009 creator A5009750573 @default.
- W2991093009 creator A5020481638 @default.
- W2991093009 date "2019-01-01" @default.
- W2991093009 modified "2023-10-18" @default.
- W2991093009 title "RGB-D Image-Based Object Detection: From Traditional Methods to Deep Learning Techniques" @default.
- W2991093009 cites W116751493 @default.
- W2991093009 cites W1202180536 @default.
- W2991093009 cites W125693051 @default.
- W2991093009 cites W1493004075 @default.
- W2991093009 cites W1536680647 @default.
- W2991093009 cites W1565402342 @default.
- W2991093009 cites W1593727536 @default.
- W2991093009 cites W1879956189 @default.
- W2991093009 cites W1901321957 @default.
- W2991093009 cites W1920022804 @default.
- W2991093009 cites W1921093919 @default.
- W2991093009 cites W1923184257 @default.
- W2991093009 cites W1938386764 @default.
- W2991093009 cites W1949568868 @default.
- W2991093009 cites W1976409045 @default.
- W2991093009 cites W1987648924 @default.
- W2991093009 cites W1991264156 @default.
- W2991093009 cites W1991367009 @default.
- W2991093009 cites W2017814585 @default.
- W2991093009 cites W2031489346 @default.
- W2991093009 cites W2034308880 @default.
- W2991093009 cites W2036196300 @default.
- W2991093009 cites W20683899 @default.
- W2991093009 cites W2069746509 @default.
- W2991093009 cites W2096688422 @default.
- W2991093009 cites W2114779816 @default.
- W2991093009 cites W2117539524 @default.
- W2991093009 cites W2118246710 @default.
- W2991093009 cites W2119851068 @default.
- W2991093009 cites W2128715914 @default.
- W2991093009 cites W2150066425 @default.
- W2991093009 cites W2151103935 @default.
- W2991093009 cites W2152571752 @default.
- W2991093009 cites W2154823510 @default.
- W2991093009 cites W2155904486 @default.
- W2991093009 cites W2161969291 @default.
- W2991093009 cites W2168356304 @default.
- W2991093009 cites W2211722331 @default.
- W2991093009 cites W2229637417 @default.
- W2991093009 cites W2233361156 @default.
- W2991093009 cites W2257534197 @default.
- W2991093009 cites W2290388232 @default.
- W2991093009 cites W2461758788 @default.
- W2991093009 cites W2463032559 @default.
- W2991093009 cites W2519379752 @default.
- W2991093009 cites W2519882742 @default.
- W2991093009 cites W2529603763 @default.
- W2991093009 cites W2533113866 @default.
- W2991093009 cites W2555618208 @default.
- W2991093009 cites W2565639579 @default.
- W2991093009 cites W2572996265 @default.
- W2991093009 cites W2575429826 @default.
- W2991093009 cites W2605111497 @default.
- W2991093009 cites W2749208254 @default.
- W2991093009 cites W2765097100 @default.
- W2991093009 cites W2780829839 @default.
- W2991093009 cites W2783231089 @default.
- W2991093009 cites W2787550496 @default.
- W2991093009 cites W2795061970 @default.
- W2991093009 cites W2798857366 @default.
- W2991093009 cites W2891823673 @default.
- W2991093009 cites W2963083779 @default.
- W2991093009 cites W2963302576 @default.
- W2991093009 cites W2963549237 @default.
- W2991093009 cites W2963721253 @default.
- W2991093009 cites W2963956866 @default.
- W2991093009 cites W2964062501 @default.
- W2991093009 cites W3099871687 @default.
- W2991093009 cites W4231008178 @default.
- W2991093009 cites W4302895712 @default.
- W2991093009 doi "https://doi.org/10.1007/978-3-030-28603-3_8" @default.
- W2991093009 hasPublicationYear "2019" @default.
- W2991093009 type Work @default.
- W2991093009 sameAs 2991093009 @default.
- W2991093009 citedByCount "7" @default.
- W2991093009 countsByYear W29910930092020 @default.
- W2991093009 countsByYear W29910930092021 @default.
- W2991093009 countsByYear W29910930092022 @default.
- W2991093009 crossrefType "book-chapter" @default.
- W2991093009 hasAuthorship W2991093009A5002077138 @default.
- W2991093009 hasAuthorship W2991093009A5009750573 @default.
- W2991093009 hasAuthorship W2991093009A5020481638 @default.
- W2991093009 hasBestOaLocation W29910930092 @default.
- W2991093009 hasConcept C108583219 @default.
- W2991093009 hasConcept C115961682 @default.
- W2991093009 hasConcept C153180895 @default.
- W2991093009 hasConcept C154945302 @default.
- W2991093009 hasConcept C31972630 @default.
- W2991093009 hasConcept C41008148 @default.
- W2991093009 hasConcept C82990744 @default.