Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991151034> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2991151034 abstract "The integration of multi-modal data, such as histopathological images and genomic data, is essential for understanding cancer heterogeneity and complexity for personalized treatments, as well as for enhancing survival predictions in cancer study. Histopathology, as a clinical gold-standard tool for diagnosis and prognosis in cancers, allows clinicians to make precise decisions on therapies, whereas high-throughput genomic data have been investigated to dissect the genetic mechanisms of cancers. We propose a biologically interpretable deep learning model (PAGE-Net) that integrates histopathological images and genomic data, not only to improve survival prediction, but also to identify genetic and histopathological patterns that cause different survival rates in patients. PAGE-Net consists of pathology/genome/demography-specific layers, each of which provides comprehensive biological interpretation. In particular, we propose a novel patch-wise texture-based convolutional neural network, with a patch aggregation strategy, to extract global survival-discriminative features, without manual annotation for the pathology-specific layers. We adapted the pathway-based sparse deep neural network, named Cox-PASNet, for the genome-specific layers. The proposed deep learning model was assessed with the histopathological images and the gene expression data of Glioblastoma Multiforme (GBM) at The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA). PAGE-Net achieved a C-index of 0.702, which is higher than the results achieved with only histopathological images (0.509) and Cox-PASNet (0.640). More importantly, PAGE-Net can simultaneously identify histopathological and genomic prognostic factors associated with patients survivals. The source code of PAGE-Net is publicly available at https://github.com/DataX-JieHao/PAGE-Net." @default.
- W2991151034 created "2019-12-05" @default.
- W2991151034 creator A5005157511 @default.
- W2991151034 creator A5010258542 @default.
- W2991151034 creator A5018171305 @default.
- W2991151034 creator A5058010272 @default.
- W2991151034 creator A5064037679 @default.
- W2991151034 date "2019-11-27" @default.
- W2991151034 modified "2023-10-14" @default.
- W2991151034 title "PAGE-Net: Interpretable and Integrative Deep Learning for Survival Analysis Using Histopathological Images and Genomic Data" @default.
- W2991151034 cites W1946635378 @default.
- W2991151034 cites W2001057991 @default.
- W2991151034 cites W2157076315 @default.
- W2991151034 cites W22040386 @default.
- W2991151034 cites W2215684076 @default.
- W2991151034 cites W2334368909 @default.
- W2991151034 cites W2362917201 @default.
- W2991151034 cites W2403197302 @default.
- W2991151034 cites W2422375349 @default.
- W2991151034 cites W2470130773 @default.
- W2991151034 cites W2514274290 @default.
- W2991151034 cites W2741582905 @default.
- W2991151034 cites W2745940724 @default.
- W2991151034 cites W2751723768 @default.
- W2991151034 cites W2761668583 @default.
- W2991151034 cites W2778705114 @default.
- W2991151034 cites W2805473961 @default.
- W2991151034 cites W2888845200 @default.
- W2991151034 doi "https://doi.org/10.1142/9789811215636_0032" @default.
- W2991151034 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31797610" @default.
- W2991151034 hasPublicationYear "2019" @default.
- W2991151034 type Work @default.
- W2991151034 sameAs 2991151034 @default.
- W2991151034 citedByCount "25" @default.
- W2991151034 countsByYear W29911510342020 @default.
- W2991151034 countsByYear W29911510342021 @default.
- W2991151034 countsByYear W29911510342022 @default.
- W2991151034 countsByYear W29911510342023 @default.
- W2991151034 crossrefType "proceedings-article" @default.
- W2991151034 hasAuthorship W2991151034A5005157511 @default.
- W2991151034 hasAuthorship W2991151034A5010258542 @default.
- W2991151034 hasAuthorship W2991151034A5018171305 @default.
- W2991151034 hasAuthorship W2991151034A5058010272 @default.
- W2991151034 hasAuthorship W2991151034A5064037679 @default.
- W2991151034 hasConcept C108583219 @default.
- W2991151034 hasConcept C153180895 @default.
- W2991151034 hasConcept C154945302 @default.
- W2991151034 hasConcept C41008148 @default.
- W2991151034 hasConceptScore W2991151034C108583219 @default.
- W2991151034 hasConceptScore W2991151034C153180895 @default.
- W2991151034 hasConceptScore W2991151034C154945302 @default.
- W2991151034 hasConceptScore W2991151034C41008148 @default.
- W2991151034 hasLocation W29911510341 @default.
- W2991151034 hasOpenAccess W2991151034 @default.
- W2991151034 hasPrimaryLocation W29911510341 @default.
- W2991151034 hasRelatedWork W2731899572 @default.
- W2991151034 hasRelatedWork W2738221750 @default.
- W2991151034 hasRelatedWork W2939353110 @default.
- W2991151034 hasRelatedWork W2948658236 @default.
- W2991151034 hasRelatedWork W3009238340 @default.
- W2991151034 hasRelatedWork W3215138031 @default.
- W2991151034 hasRelatedWork W4312962853 @default.
- W2991151034 hasRelatedWork W4321369474 @default.
- W2991151034 hasRelatedWork W4327774331 @default.
- W2991151034 hasRelatedWork W4360585206 @default.
- W2991151034 isParatext "false" @default.
- W2991151034 isRetracted "false" @default.
- W2991151034 magId "2991151034" @default.
- W2991151034 workType "article" @default.