Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991224188> ?p ?o ?g. }
- W2991224188 endingPage "135316" @default.
- W2991224188 startingPage "135316" @default.
- W2991224188 abstract "Electrochemical impedance spectroscopy (EIS) is one of the most important techniques in electrochemistry. However, analyzing the EIS data is not a simple task. The distribution of relaxation times (DRT) method offers an elegant solution to this considerable challenge. In addition to that, the DRT method can be used to obtain the time characteristics of the electrochemical system under study. Though, deconvolving the DRT from the EIS data is an ill-posed problem, which is particularly sensitive to experimental errors. Several well-known approaches, including ridge regularization, can overcome this issue but they all require the use of ad hoc hyperparameters. Furthermore, most methods are not probabilistic and therefore do not provide any uncertainty on the estimated DRT. In this work, by assuming that the DRT is a Gaussian process (GP), it is not only possible to obtain the DRT mean and covariance from the EIS data but also to predict both the DRT and the imaginary part of the impedance at frequencies not previously measured. One important point to note is that, unlike other methods, the parameters that define the GP-DRT model can be selected rationally by maximizing the experimental evidence. The GP-DRT approach is tested using synthetic experiments for analyzing the consistency of the method and “real” experiments to gauge its performance for real data. The GP-DRT model is shown to be able to manage considerable noise, overlapping timescales, truncated data, and inductive features. Considering the GP-DRT framework developed and the results of the simulations, the GP-DRT will likely inspire further studies on using a probabilistic approach to interpret EIS data." @default.
- W2991224188 created "2019-12-05" @default.
- W2991224188 creator A5029424400 @default.
- W2991224188 creator A5087140435 @default.
- W2991224188 date "2020-01-01" @default.
- W2991224188 modified "2023-10-15" @default.
- W2991224188 title "The Gaussian process distribution of relaxation times: A machine learning tool for the analysis and prediction of electrochemical impedance spectroscopy data" @default.
- W2991224188 cites W1803928922 @default.
- W2991224188 cites W1965240860 @default.
- W2991224188 cites W1974033693 @default.
- W2991224188 cites W1992437244 @default.
- W2991224188 cites W1994350688 @default.
- W2991224188 cites W1994590439 @default.
- W2991224188 cites W1995577824 @default.
- W2991224188 cites W1996157277 @default.
- W2991224188 cites W1997716659 @default.
- W2991224188 cites W2001590845 @default.
- W2991224188 cites W2006210368 @default.
- W2991224188 cites W2006773274 @default.
- W2991224188 cites W2019550185 @default.
- W2991224188 cites W2019997790 @default.
- W2991224188 cites W2030372083 @default.
- W2991224188 cites W2042289823 @default.
- W2991224188 cites W2047612475 @default.
- W2991224188 cites W2047811690 @default.
- W2991224188 cites W2048575764 @default.
- W2991224188 cites W2054956868 @default.
- W2991224188 cites W2057282529 @default.
- W2991224188 cites W2060633308 @default.
- W2991224188 cites W2066008448 @default.
- W2991224188 cites W2066665291 @default.
- W2991224188 cites W2071213755 @default.
- W2991224188 cites W2073226148 @default.
- W2991224188 cites W2082847674 @default.
- W2991224188 cites W2083326529 @default.
- W2991224188 cites W2083936599 @default.
- W2991224188 cites W2101713668 @default.
- W2991224188 cites W2105543987 @default.
- W2991224188 cites W2112888559 @default.
- W2991224188 cites W2119797882 @default.
- W2991224188 cites W2120890726 @default.
- W2991224188 cites W2130064514 @default.
- W2991224188 cites W2138245613 @default.
- W2991224188 cites W2142102207 @default.
- W2991224188 cites W2143009586 @default.
- W2991224188 cites W2163696027 @default.
- W2991224188 cites W2171236183 @default.
- W2991224188 cites W2189004594 @default.
- W2991224188 cites W2279671604 @default.
- W2991224188 cites W2315130841 @default.
- W2991224188 cites W2538997918 @default.
- W2991224188 cites W2602994443 @default.
- W2991224188 cites W2738473713 @default.
- W2991224188 cites W2738614322 @default.
- W2991224188 cites W2752004087 @default.
- W2991224188 cites W2754368725 @default.
- W2991224188 cites W2755287822 @default.
- W2991224188 cites W2771542126 @default.
- W2991224188 cites W2773420235 @default.
- W2991224188 cites W2799492759 @default.
- W2991224188 cites W2885174003 @default.
- W2991224188 cites W2904240834 @default.
- W2991224188 cites W2914432190 @default.
- W2991224188 cites W2935716561 @default.
- W2991224188 cites W2937096795 @default.
- W2991224188 cites W2943948978 @default.
- W2991224188 cites W2944939928 @default.
- W2991224188 cites W2963835998 @default.
- W2991224188 cites W68217736 @default.
- W2991224188 doi "https://doi.org/10.1016/j.electacta.2019.135316" @default.
- W2991224188 hasPublicationYear "2020" @default.
- W2991224188 type Work @default.
- W2991224188 sameAs 2991224188 @default.
- W2991224188 citedByCount "64" @default.
- W2991224188 countsByYear W29912241882020 @default.
- W2991224188 countsByYear W29912241882021 @default.
- W2991224188 countsByYear W29912241882022 @default.
- W2991224188 countsByYear W29912241882023 @default.
- W2991224188 crossrefType "journal-article" @default.
- W2991224188 hasAuthorship W2991224188A5029424400 @default.
- W2991224188 hasAuthorship W2991224188A5087140435 @default.
- W2991224188 hasBestOaLocation W29912241882 @default.
- W2991224188 hasConcept C105795698 @default.
- W2991224188 hasConcept C11413529 @default.
- W2991224188 hasConcept C121332964 @default.
- W2991224188 hasConcept C147597530 @default.
- W2991224188 hasConcept C147789679 @default.
- W2991224188 hasConcept C154945302 @default.
- W2991224188 hasConcept C163716315 @default.
- W2991224188 hasConcept C17525397 @default.
- W2991224188 hasConcept C17829176 @default.
- W2991224188 hasConcept C178650346 @default.
- W2991224188 hasConcept C185592680 @default.
- W2991224188 hasConcept C2776436953 @default.
- W2991224188 hasConcept C33923547 @default.
- W2991224188 hasConcept C41008148 @default.
- W2991224188 hasConcept C49937458 @default.
- W2991224188 hasConcept C52859227 @default.