Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991277950> ?p ?o ?g. }
- W2991277950 endingPage "1967" @default.
- W2991277950 startingPage "1954" @default.
- W2991277950 abstract "The past years have witnessed a revival of neural network and learning strategies. These models configure multiple hidden layers hierarchically and require large amounts of labeled samples to estimate the model parameters. It is yet difficult to be met for target recognition under the realistic environments. For either space borne or airborne radars, collecting multiple samples with label information is very expensive and difficult. In addition, the huge computational cost and poor speed of convergence limit the practical applications. To address the problems, this article presents a new thought of receptive, under which a special hierarchy of feedforward neural network has been built. The proposed strategy consists of two sequential modules: 1) feature generation and 2) feature refinement. We first build pairwise baseline signals by means of the Riesz transform along the range and the azimuth, and extend them to a family of receptive signals using the bandpass filter bank. The input SAR image is then generally convoluted with the set of receptive signals to extract the global features. Certain kinds of information can be then exploited. We make the receptive signals predefined, rather than learned automatically, to handle the environment of a small sample size. In addition, the expert knowledge can be transmitted into the neural network. The resulting features are further refined by a special unit, wherein the input neurons and the latent states are bridged by the weights and the bias randomly generated. They are fixed during the training process. On the other hand, we cast the latent state into the Hilbert space, forming the kernel version of refinement. We aim to achieve the comparable or even better performance yet with limited training resources." @default.
- W2991277950 created "2019-12-05" @default.
- W2991277950 creator A5034852790 @default.
- W2991277950 creator A5058394999 @default.
- W2991277950 date "2021-04-01" @default.
- W2991277950 modified "2023-10-13" @default.
- W2991277950 title "Global Receptive-Based Neural Network for Target Recognition in SAR Images" @default.
- W2991277950 cites W1571809481 @default.
- W2991277950 cites W1906374873 @default.
- W2991277950 cites W1964494592 @default.
- W2991277950 cites W1969795324 @default.
- W2991277950 cites W2004362043 @default.
- W2991277950 cites W2020898814 @default.
- W2991277950 cites W2038501427 @default.
- W2991277950 cites W2038591350 @default.
- W2991277950 cites W2041772080 @default.
- W2991277950 cites W2089520361 @default.
- W2991277950 cites W2104269704 @default.
- W2991277950 cites W2111703458 @default.
- W2991277950 cites W2112796928 @default.
- W2991277950 cites W2122947397 @default.
- W2991277950 cites W2124014399 @default.
- W2991277950 cites W2138287042 @default.
- W2991277950 cites W2149918662 @default.
- W2991277950 cites W2150860957 @default.
- W2991277950 cites W2163463863 @default.
- W2991277950 cites W2164330327 @default.
- W2991277950 cites W2168880067 @default.
- W2991277950 cites W2290480450 @default.
- W2991277950 cites W2517475170 @default.
- W2991277950 cites W2588677815 @default.
- W2991277950 cites W2598799153 @default.
- W2991277950 cites W2604973793 @default.
- W2991277950 cites W2610681481 @default.
- W2991277950 cites W2741749842 @default.
- W2991277950 cites W2771429811 @default.
- W2991277950 cites W2790203190 @default.
- W2991277950 cites W2791514264 @default.
- W2991277950 cites W2890732922 @default.
- W2991277950 cites W2893196123 @default.
- W2991277950 cites W2900193097 @default.
- W2991277950 cites W2901694823 @default.
- W2991277950 cites W2917056838 @default.
- W2991277950 cites W2944003962 @default.
- W2991277950 doi "https://doi.org/10.1109/tcyb.2019.2952400" @default.
- W2991277950 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31794417" @default.
- W2991277950 hasPublicationYear "2021" @default.
- W2991277950 type Work @default.
- W2991277950 sameAs 2991277950 @default.
- W2991277950 citedByCount "9" @default.
- W2991277950 countsByYear W29912779502020 @default.
- W2991277950 countsByYear W29912779502021 @default.
- W2991277950 countsByYear W29912779502022 @default.
- W2991277950 countsByYear W29912779502023 @default.
- W2991277950 crossrefType "journal-article" @default.
- W2991277950 hasAuthorship W2991277950A5034852790 @default.
- W2991277950 hasAuthorship W2991277950A5058394999 @default.
- W2991277950 hasConcept C106131492 @default.
- W2991277950 hasConcept C114614502 @default.
- W2991277950 hasConcept C138885662 @default.
- W2991277950 hasConcept C153180895 @default.
- W2991277950 hasConcept C154945302 @default.
- W2991277950 hasConcept C184898388 @default.
- W2991277950 hasConcept C2776401178 @default.
- W2991277950 hasConcept C31972630 @default.
- W2991277950 hasConcept C33923547 @default.
- W2991277950 hasConcept C41008148 @default.
- W2991277950 hasConcept C41895202 @default.
- W2991277950 hasConcept C50644808 @default.
- W2991277950 hasConcept C83665646 @default.
- W2991277950 hasConcept C87619178 @default.
- W2991277950 hasConceptScore W2991277950C106131492 @default.
- W2991277950 hasConceptScore W2991277950C114614502 @default.
- W2991277950 hasConceptScore W2991277950C138885662 @default.
- W2991277950 hasConceptScore W2991277950C153180895 @default.
- W2991277950 hasConceptScore W2991277950C154945302 @default.
- W2991277950 hasConceptScore W2991277950C184898388 @default.
- W2991277950 hasConceptScore W2991277950C2776401178 @default.
- W2991277950 hasConceptScore W2991277950C31972630 @default.
- W2991277950 hasConceptScore W2991277950C33923547 @default.
- W2991277950 hasConceptScore W2991277950C41008148 @default.
- W2991277950 hasConceptScore W2991277950C41895202 @default.
- W2991277950 hasConceptScore W2991277950C50644808 @default.
- W2991277950 hasConceptScore W2991277950C83665646 @default.
- W2991277950 hasConceptScore W2991277950C87619178 @default.
- W2991277950 hasFunder F4320321001 @default.
- W2991277950 hasIssue "4" @default.
- W2991277950 hasLocation W29912779501 @default.
- W2991277950 hasOpenAccess W2991277950 @default.
- W2991277950 hasPrimaryLocation W29912779501 @default.
- W2991277950 hasRelatedWork W1504288058 @default.
- W2991277950 hasRelatedWork W2017205855 @default.
- W2991277950 hasRelatedWork W2048505601 @default.
- W2991277950 hasRelatedWork W2167293474 @default.
- W2991277950 hasRelatedWork W2331674254 @default.
- W2991277950 hasRelatedWork W2358403311 @default.
- W2991277950 hasRelatedWork W2789928768 @default.
- W2991277950 hasRelatedWork W2938286185 @default.