Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991306453> ?p ?o ?g. }
- W2991306453 endingPage "124371" @default.
- W2991306453 startingPage "124371" @default.
- W2991306453 abstract "Monthly streamflow prediction is very important for many hydrological applications in providing information for optimal use of water resources. In this study, the prediction accuracy of new heuristic methods, optimally pruned extreme learning machine (OP-ELM), least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5Tree), is examined in modeling monthly streamflows using precipitation and temperature inputs. Data collected from Kalam and Chakdara stations at a mountainous basin, Swat River Basin, Pakistan are utilized as case study. The prediction accuracy of all four methods are validated and tested using four different input scenarios and evaluated using combined accuracy (CA), a newly used criterion in addition to root-mean-square error (RMSE), normalized RMSE, mean absolute error (MAE) and Nash-Sutcliffe efficiency (NSE). The test results of both stations show that the LSSVM and MARS-based models provide more accurate prediction results compared to OP-ELM and M5Tree models. LSSVM decreases the RMSE of the MARS, OP-ELM and M5Tree by 9.12%, 25.64% and 35.15% for the Kalam station while the RMSEs of the LSSVM, OP-ELM and M5Tree is decreased by 2.12%, 34.81% and 32.52% using MARS, for the Chakdara Station, respectively. It is observed that the monthly streamflows of Kalam Station can be successfully predicted using only temperature data. Only precipitation inputs also provide good accuracy for Kalam Station while they produce inaccurate predictions for the Chakdara Station. The prediction capabilities of the applied methods are also examined in estimating streamflow of downstream station using upstream data. The results prove the dominancy of LSSVM and MARS-based models over OP-ELM and M5Tree in prediction streamflow data without local input data. Heuristic methods are also compared with stochastic method of seasonal auto regressive moving average (SARIMA). The OP-ELM, LSSVM, MARS perform superior to the SARIMA in monthly streamflow prediction. Based on the overall results, the LSSVM and MARS are recommended for monthly streamflow prediction with or without local data." @default.
- W2991306453 created "2019-12-05" @default.
- W2991306453 creator A5001907851 @default.
- W2991306453 creator A5022052919 @default.
- W2991306453 creator A5043935498 @default.
- W2991306453 creator A5050493451 @default.
- W2991306453 creator A5061108304 @default.
- W2991306453 creator A5075190563 @default.
- W2991306453 date "2020-07-01" @default.
- W2991306453 modified "2023-10-18" @default.
- W2991306453 title "Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs" @default.
- W2991306453 cites W1132038451 @default.
- W2991306453 cites W1596717185 @default.
- W2991306453 cites W1907316133 @default.
- W2991306453 cites W1975827138 @default.
- W2991306453 cites W1989092102 @default.
- W2991306453 cites W1990995949 @default.
- W2991306453 cites W2038418568 @default.
- W2991306453 cites W2058621438 @default.
- W2991306453 cites W2058650949 @default.
- W2991306453 cites W2058998332 @default.
- W2991306453 cites W2061671048 @default.
- W2991306453 cites W2102201073 @default.
- W2991306453 cites W2130378394 @default.
- W2991306453 cites W2165967751 @default.
- W2991306453 cites W2216444323 @default.
- W2991306453 cites W2300323517 @default.
- W2991306453 cites W2302101267 @default.
- W2991306453 cites W2339400037 @default.
- W2991306453 cites W2469821678 @default.
- W2991306453 cites W2518675717 @default.
- W2991306453 cites W2561439540 @default.
- W2991306453 cites W2574416852 @default.
- W2991306453 cites W2597970394 @default.
- W2991306453 cites W2606920954 @default.
- W2991306453 cites W2625709058 @default.
- W2991306453 cites W2765195286 @default.
- W2991306453 cites W2765286064 @default.
- W2991306453 cites W2765937703 @default.
- W2991306453 cites W2768568372 @default.
- W2991306453 cites W2770179522 @default.
- W2991306453 cites W2792034138 @default.
- W2991306453 cites W2795763029 @default.
- W2991306453 cites W2800887117 @default.
- W2991306453 cites W2801119840 @default.
- W2991306453 cites W2801145859 @default.
- W2991306453 cites W2802361912 @default.
- W2991306453 cites W2804523998 @default.
- W2991306453 cites W2807107999 @default.
- W2991306453 cites W2808998311 @default.
- W2991306453 cites W2815792770 @default.
- W2991306453 cites W2884412107 @default.
- W2991306453 cites W2887286835 @default.
- W2991306453 cites W2888495088 @default.
- W2991306453 cites W2896144795 @default.
- W2991306453 cites W2898939125 @default.
- W2991306453 cites W2899704707 @default.
- W2991306453 cites W2899996856 @default.
- W2991306453 cites W2901469855 @default.
- W2991306453 cites W2901543598 @default.
- W2991306453 cites W2905485021 @default.
- W2991306453 cites W2908827354 @default.
- W2991306453 cites W2908881966 @default.
- W2991306453 cites W2918500418 @default.
- W2991306453 cites W2972371821 @default.
- W2991306453 cites W836867855 @default.
- W2991306453 doi "https://doi.org/10.1016/j.jhydrol.2019.124371" @default.
- W2991306453 hasPublicationYear "2020" @default.
- W2991306453 type Work @default.
- W2991306453 sameAs 2991306453 @default.
- W2991306453 citedByCount "139" @default.
- W2991306453 countsByYear W29913064532020 @default.
- W2991306453 countsByYear W29913064532021 @default.
- W2991306453 countsByYear W29913064532022 @default.
- W2991306453 countsByYear W29913064532023 @default.
- W2991306453 crossrefType "journal-article" @default.
- W2991306453 hasAuthorship W2991306453A5001907851 @default.
- W2991306453 hasAuthorship W2991306453A5022052919 @default.
- W2991306453 hasAuthorship W2991306453A5043935498 @default.
- W2991306453 hasAuthorship W2991306453A5050493451 @default.
- W2991306453 hasAuthorship W2991306453A5061108304 @default.
- W2991306453 hasAuthorship W2991306453A5075190563 @default.
- W2991306453 hasConcept C105795698 @default.
- W2991306453 hasConcept C119857082 @default.
- W2991306453 hasConcept C120068334 @default.
- W2991306453 hasConcept C121332964 @default.
- W2991306453 hasConcept C12267149 @default.
- W2991306453 hasConcept C126645576 @default.
- W2991306453 hasConcept C1276947 @default.
- W2991306453 hasConcept C139945424 @default.
- W2991306453 hasConcept C161584116 @default.
- W2991306453 hasConcept C205649164 @default.
- W2991306453 hasConcept C2780150128 @default.
- W2991306453 hasConcept C33923547 @default.
- W2991306453 hasConcept C41008148 @default.
- W2991306453 hasConcept C44882253 @default.
- W2991306453 hasConcept C50644808 @default.
- W2991306453 hasConcept C53739315 @default.