Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991344233> ?p ?o ?g. }
- W2991344233 endingPage "245014" @default.
- W2991344233 startingPage "245014" @default.
- W2991344233 abstract "Delineation of major torso organs is a key step of mouse micro-CT image analysis. This task is challenging due to low soft tissue contrast and high image noise, therefore anatomical prior knowledge is needed for accurate prediction of organ regions. In this work, we develop a deeply supervised fully convolutional network which uses the organ anatomy prior learned from independently acquired contrast-enhanced micro-CT images to assist the segmentation of non-enhanced images. The network is designed with a two-stage workflow which firstly predicts the rough regions of multiple organs and then refines the accuracy of each organ in local regions. The network is trained and evaluated with 40 mouse micro-CT images. The volumetric prediction accuracy (Dice score) varies from 0.57 for the spleen to 0.95 for the heart. Compared to a conventional atlas registration method, our method dramatically improves the Dice of the abdominal organs by 18%-26%. Moreover, the incorporation of anatomical prior leads to more accurate results for small-sized low-contrast organs (e.g. the spleen and kidneys). We also find that the localized stage of the network has better accuracy than the global stage, indicating that localized single organ prediction is more accurate than global multiple organ prediction. With this work, the accuracy and efficiency of mouse micro-CT image analysis are greatly improved and the need for using contrast agent and high x-ray dose is potentially reduced." @default.
- W2991344233 created "2019-12-05" @default.
- W2991344233 creator A5010996024 @default.
- W2991344233 creator A5019167995 @default.
- W2991344233 creator A5035602884 @default.
- W2991344233 creator A5038013995 @default.
- W2991344233 creator A5054681352 @default.
- W2991344233 creator A5066439499 @default.
- W2991344233 date "2019-12-19" @default.
- W2991344233 modified "2023-09-25" @default.
- W2991344233 title "Prediction of major torso organs in low-contrast micro-CT images of mice using a two-stage deeply supervised fully convolutional network" @default.
- W2991344233 cites W114517082 @default.
- W2991344233 cites W1490815866 @default.
- W2991344233 cites W1901129140 @default.
- W2991344233 cites W1965070352 @default.
- W2991344233 cites W1978708231 @default.
- W2991344233 cites W1980864508 @default.
- W2991344233 cites W1982015251 @default.
- W2991344233 cites W1991213022 @default.
- W2991344233 cites W1991412715 @default.
- W2991344233 cites W1997536570 @default.
- W2991344233 cites W2015628184 @default.
- W2991344233 cites W2046758959 @default.
- W2991344233 cites W2055894011 @default.
- W2991344233 cites W2059488915 @default.
- W2991344233 cites W2065818634 @default.
- W2991344233 cites W2071323941 @default.
- W2991344233 cites W2090930736 @default.
- W2991344233 cites W2108090472 @default.
- W2991344233 cites W2117174931 @default.
- W2991344233 cites W2131574822 @default.
- W2991344233 cites W2148522252 @default.
- W2991344233 cites W2155174544 @default.
- W2991344233 cites W2286941808 @default.
- W2991344233 cites W2318846943 @default.
- W2991344233 cites W2395611524 @default.
- W2991344233 cites W2475148236 @default.
- W2991344233 cites W2569274464 @default.
- W2991344233 cites W2592929672 @default.
- W2991344233 cites W2613041730 @default.
- W2991344233 cites W2618530766 @default.
- W2991344233 cites W2769464244 @default.
- W2991344233 cites W2791680898 @default.
- W2991344233 cites W2896310450 @default.
- W2991344233 cites W2901559346 @default.
- W2991344233 cites W2949153442 @default.
- W2991344233 cites W2962914239 @default.
- W2991344233 cites W2964227007 @default.
- W2991344233 doi "https://doi.org/10.1088/1361-6560/ab59a4" @default.
- W2991344233 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31747654" @default.
- W2991344233 hasPublicationYear "2019" @default.
- W2991344233 type Work @default.
- W2991344233 sameAs 2991344233 @default.
- W2991344233 citedByCount "7" @default.
- W2991344233 countsByYear W29913442332020 @default.
- W2991344233 countsByYear W29913442332021 @default.
- W2991344233 countsByYear W29913442332022 @default.
- W2991344233 countsByYear W29913442332023 @default.
- W2991344233 crossrefType "journal-article" @default.
- W2991344233 hasAuthorship W2991344233A5010996024 @default.
- W2991344233 hasAuthorship W2991344233A5019167995 @default.
- W2991344233 hasAuthorship W2991344233A5035602884 @default.
- W2991344233 hasAuthorship W2991344233A5038013995 @default.
- W2991344233 hasAuthorship W2991344233A5054681352 @default.
- W2991344233 hasAuthorship W2991344233A5066439499 @default.
- W2991344233 hasConcept C105702510 @default.
- W2991344233 hasConcept C124504099 @default.
- W2991344233 hasConcept C126838900 @default.
- W2991344233 hasConcept C143409427 @default.
- W2991344233 hasConcept C146357865 @default.
- W2991344233 hasConcept C151730666 @default.
- W2991344233 hasConcept C153180895 @default.
- W2991344233 hasConcept C154945302 @default.
- W2991344233 hasConcept C2776502983 @default.
- W2991344233 hasConcept C3018181011 @default.
- W2991344233 hasConcept C31972630 @default.
- W2991344233 hasConcept C41008148 @default.
- W2991344233 hasConcept C523889960 @default.
- W2991344233 hasConcept C71924100 @default.
- W2991344233 hasConcept C81363708 @default.
- W2991344233 hasConcept C86803240 @default.
- W2991344233 hasConcept C89600930 @default.
- W2991344233 hasConceptScore W2991344233C105702510 @default.
- W2991344233 hasConceptScore W2991344233C124504099 @default.
- W2991344233 hasConceptScore W2991344233C126838900 @default.
- W2991344233 hasConceptScore W2991344233C143409427 @default.
- W2991344233 hasConceptScore W2991344233C146357865 @default.
- W2991344233 hasConceptScore W2991344233C151730666 @default.
- W2991344233 hasConceptScore W2991344233C153180895 @default.
- W2991344233 hasConceptScore W2991344233C154945302 @default.
- W2991344233 hasConceptScore W2991344233C2776502983 @default.
- W2991344233 hasConceptScore W2991344233C3018181011 @default.
- W2991344233 hasConceptScore W2991344233C31972630 @default.
- W2991344233 hasConceptScore W2991344233C41008148 @default.
- W2991344233 hasConceptScore W2991344233C523889960 @default.
- W2991344233 hasConceptScore W2991344233C71924100 @default.
- W2991344233 hasConceptScore W2991344233C81363708 @default.
- W2991344233 hasConceptScore W2991344233C86803240 @default.