Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991384073> ?p ?o ?g. }
- W2991384073 endingPage "114176" @default.
- W2991384073 startingPage "114176" @default.
- W2991384073 abstract "• The catalytic performance of char can be maintained at high temperatures (e.g. 850 °C). • Microporous chars deactivate faster than mesoporous chars. • At elevated temperatures activated char and regular char demonstrate similar performance. • Simulations showed that mesoporous chars conserve their catalytic activity for over 10 h. • Coke in micropores cannot be gasified even at high temperatures (e.g. 850 °C). The application of gasification to thermally treat biomass as carbon neutral resources has been constrained by the technical challenges associated with tar formations, which cause operational problems in downstream equipment for syngas processing. Catalysts, such as transition metals, calcined rocks and char, can be used to catalyse tar reforming. Biochars, which are naturally produced during biomass gasification, are particularly attractive as an alternative catalyst due to their catalytic functions, low cost and long endurance. Despite these promising characteristics, adequate knowledge on the relationship between the porous structure of biochar and its deactivation by coking during the steam reforming of tars is not available. In this work, the influence of the porous structure of biochar on its performance across time for reforming tar was investigated in a fixed-bed reactor, over a temperature range from 650 to 850 °C. Regular biochar and physically activated biochar from the same precursor biomass were employed as bed material. The tar samples were the composed mixture of benzene, toluene and naphthalene. Both fresh and spent catalysts were analysed with Brunauer-Emmet-Teller, t-plot, Fourier Transform Infrared and Scanning Electron Microscopy/Energy Dispersive Spectroscopy. Results showed that, while at moderate temperatures of 650 and 750 °C, the activated biochar offered a higher tar conversion but more severe deactivation than that of the regular biochar. At the high temperature of 850 °C, the difference in the catalytic performance between the two chars was negligible, and over 90% of the initial tar species were removed throughout the 3-hour long experiments. At 850 °C, the coke deposited in the meso- and macro-pores of both chars was gasified, leading to a stable catalytic performance of both chars. The results indicated that meso- and macro-porous biochars are resilient and active enough to become a viable option for tar steam reforming." @default.
- W2991384073 created "2019-12-05" @default.
- W2991384073 creator A5025824346 @default.
- W2991384073 creator A5027835055 @default.
- W2991384073 creator A5039276858 @default.
- W2991384073 creator A5064227757 @default.
- W2991384073 creator A5082846858 @default.
- W2991384073 date "2020-02-01" @default.
- W2991384073 modified "2023-10-04" @default.
- W2991384073 title "Performance of biochar as a catalyst for tar steam reforming: Effect of the porous structure" @default.
- W2991384073 cites W1480859926 @default.
- W2991384073 cites W1952015329 @default.
- W2991384073 cites W1965024135 @default.
- W2991384073 cites W1967830504 @default.
- W2991384073 cites W1968506934 @default.
- W2991384073 cites W1970403262 @default.
- W2991384073 cites W1985135822 @default.
- W2991384073 cites W1987120783 @default.
- W2991384073 cites W1989782109 @default.
- W2991384073 cites W1994034634 @default.
- W2991384073 cites W2000598847 @default.
- W2991384073 cites W2002255385 @default.
- W2991384073 cites W2016594151 @default.
- W2991384073 cites W2021454531 @default.
- W2991384073 cites W2023842604 @default.
- W2991384073 cites W2024674735 @default.
- W2991384073 cites W2049204369 @default.
- W2991384073 cites W2057155562 @default.
- W2991384073 cites W2066180624 @default.
- W2991384073 cites W2066874873 @default.
- W2991384073 cites W2071472704 @default.
- W2991384073 cites W2073412522 @default.
- W2991384073 cites W2075746121 @default.
- W2991384073 cites W2080523536 @default.
- W2991384073 cites W2082650487 @default.
- W2991384073 cites W2093580476 @default.
- W2991384073 cites W2096404813 @default.
- W2991384073 cites W2097131218 @default.
- W2991384073 cites W2098918370 @default.
- W2991384073 cites W2137737658 @default.
- W2991384073 cites W2318151721 @default.
- W2991384073 cites W2396044737 @default.
- W2991384073 cites W2442680836 @default.
- W2991384073 cites W2513604899 @default.
- W2991384073 cites W2607733063 @default.
- W2991384073 cites W2626220115 @default.
- W2991384073 cites W2727974020 @default.
- W2991384073 cites W2740880219 @default.
- W2991384073 cites W2752764527 @default.
- W2991384073 cites W2885621347 @default.
- W2991384073 cites W2910434891 @default.
- W2991384073 cites W2925255677 @default.
- W2991384073 cites W843007777 @default.
- W2991384073 cites W910742731 @default.
- W2991384073 doi "https://doi.org/10.1016/j.apenergy.2019.114176" @default.
- W2991384073 hasPublicationYear "2020" @default.
- W2991384073 type Work @default.
- W2991384073 sameAs 2991384073 @default.
- W2991384073 citedByCount "74" @default.
- W2991384073 countsByYear W29913840732019 @default.
- W2991384073 countsByYear W29913840732020 @default.
- W2991384073 countsByYear W29913840732021 @default.
- W2991384073 countsByYear W29913840732022 @default.
- W2991384073 countsByYear W29913840732023 @default.
- W2991384073 crossrefType "journal-article" @default.
- W2991384073 hasAuthorship W2991384073A5025824346 @default.
- W2991384073 hasAuthorship W2991384073A5027835055 @default.
- W2991384073 hasAuthorship W2991384073A5039276858 @default.
- W2991384073 hasAuthorship W2991384073A5064227757 @default.
- W2991384073 hasAuthorship W2991384073A5082846858 @default.
- W2991384073 hasBestOaLocation W29913840732 @default.
- W2991384073 hasConcept C127413603 @default.
- W2991384073 hasConcept C150394285 @default.
- W2991384073 hasConcept C161790260 @default.
- W2991384073 hasConcept C178790620 @default.
- W2991384073 hasConcept C185592680 @default.
- W2991384073 hasConcept C192562407 @default.
- W2991384073 hasConcept C192643346 @default.
- W2991384073 hasConcept C194439259 @default.
- W2991384073 hasConcept C199360897 @default.
- W2991384073 hasConcept C202189072 @default.
- W2991384073 hasConcept C2779255514 @default.
- W2991384073 hasConcept C2779647737 @default.
- W2991384073 hasConcept C2779970684 @default.
- W2991384073 hasConcept C2780385392 @default.
- W2991384073 hasConcept C36759035 @default.
- W2991384073 hasConcept C41008148 @default.
- W2991384073 hasConcept C42360764 @default.
- W2991384073 hasConcept C43535742 @default.
- W2991384073 hasConcept C548081761 @default.
- W2991384073 hasConcept C56085101 @default.
- W2991384073 hasConcept C6648577 @default.
- W2991384073 hasConcept C7082614 @default.
- W2991384073 hasConcept C82776694 @default.
- W2991384073 hasConcept C86381522 @default.
- W2991384073 hasConceptScore W2991384073C127413603 @default.
- W2991384073 hasConceptScore W2991384073C150394285 @default.
- W2991384073 hasConceptScore W2991384073C161790260 @default.