Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991393314> ?p ?o ?g. }
- W2991393314 endingPage "2428" @default.
- W2991393314 startingPage "2409" @default.
- W2991393314 abstract "Abstract. This work evaluates the statistical predictability of the Arctic sea ice volume (SIV) anomaly – here defined as the detrended and deseasonalized SIV – on the interannual timescale. To do so, we made use of six datasets, from three different atmosphere–ocean general circulation models, with two different horizontal grid resolutions each. Based on these datasets, we have developed a statistical empirical model which in turn was used to test the performance of different predictor variables, as well as to identify optimal locations from where the SIV anomaly could be better reconstructed and/or predicted. We tested the hypothesis that an ideal sampling strategy characterized by only a few optimal sampling locations can provide in situ data for statistically reproducing and/or predicting the SIV interannual variability. The results showed that, apart from the SIV itself, the sea ice thickness is the best predictor variable, although total sea ice area, sea ice concentration, sea surface temperature, and sea ice drift can also contribute to improving the prediction skill. The prediction skill can be enhanced further by combining several predictors into the statistical model. Applying the statistical model with predictor data from four well-placed locations is sufficient for reconstructing about 70 % of the SIV anomaly variance. As suggested by the results, the four first best locations are placed at the transition Chukchi Sea–central Arctic–Beaufort Sea (79.5∘ N, 158.0∘ W), near the North Pole (88.5∘ N, 40.0∘ E), at the transition central Arctic–Laptev Sea (81.5∘ N, 107.0∘ E), and offshore the Canadian Archipelago (82.5∘ N, 109.0∘ W), in this respective order. Adding further to six well-placed locations, which explain about 80 % of the SIV anomaly variance, the statistical predictability does not substantially improve taking into account that 10 locations explain about 84 % of that variance. An improved model horizontal resolution allows a better trained statistical model so that the reconstructed values better approach the original SIV anomaly. On the other hand, if we inspect the interannual variability, the predictors provided by numerical models with lower horizontal resolution perform better when reconstructing the original SIV variability. We believe that this study provides recommendations for the ongoing and upcoming observational initiatives, in terms of an Arctic optimal observing design, for studying and predicting not only the SIV values but also its interannual variability." @default.
- W2991393314 created "2019-12-05" @default.
- W2991393314 creator A5001566161 @default.
- W2991393314 creator A5002203059 @default.
- W2991393314 creator A5042851193 @default.
- W2991393314 creator A5054767802 @default.
- W2991393314 creator A5089602850 @default.
- W2991393314 date "2020-07-27" @default.
- W2991393314 modified "2023-10-18" @default.
- W2991393314 title "Statistical predictability of the Arctic sea ice volume anomaly: identifying predictors and optimal sampling locations" @default.
- W2991393314 cites W1660527569 @default.
- W2991393314 cites W1960586518 @default.
- W2991393314 cites W1975257588 @default.
- W2991393314 cites W1980805564 @default.
- W2991393314 cites W1981998039 @default.
- W2991393314 cites W1993521045 @default.
- W2991393314 cites W2009412734 @default.
- W2991393314 cites W2021685470 @default.
- W2991393314 cites W2023530109 @default.
- W2991393314 cites W2024417959 @default.
- W2991393314 cites W2027395589 @default.
- W2991393314 cites W2037781782 @default.
- W2991393314 cites W2043688636 @default.
- W2991393314 cites W2048269251 @default.
- W2991393314 cites W2053747241 @default.
- W2991393314 cites W2055049825 @default.
- W2991393314 cites W2060171508 @default.
- W2991393314 cites W2063899295 @default.
- W2991393314 cites W2065353910 @default.
- W2991393314 cites W2066395003 @default.
- W2991393314 cites W2078587213 @default.
- W2991393314 cites W2080696660 @default.
- W2991393314 cites W2103164730 @default.
- W2991393314 cites W2107925628 @default.
- W2991393314 cites W2121916131 @default.
- W2991393314 cites W2123117722 @default.
- W2991393314 cites W2133473407 @default.
- W2991393314 cites W2141442289 @default.
- W2991393314 cites W2153559865 @default.
- W2991393314 cites W2160410587 @default.
- W2991393314 cites W2170174991 @default.
- W2991393314 cites W2193503481 @default.
- W2991393314 cites W2232638361 @default.
- W2991393314 cites W2254834656 @default.
- W2991393314 cites W2270192226 @default.
- W2991393314 cites W2297508164 @default.
- W2991393314 cites W2405605974 @default.
- W2991393314 cites W2416535814 @default.
- W2991393314 cites W2467009748 @default.
- W2991393314 cites W2485901231 @default.
- W2991393314 cites W2518564917 @default.
- W2991393314 cites W2528757174 @default.
- W2991393314 cites W2548920327 @default.
- W2991393314 cites W2550337802 @default.
- W2991393314 cites W2606839086 @default.
- W2991393314 cites W2619280447 @default.
- W2991393314 cites W2726433929 @default.
- W2991393314 cites W2741770092 @default.
- W2991393314 cites W2761667977 @default.
- W2991393314 cites W2762212212 @default.
- W2991393314 cites W2767480666 @default.
- W2991393314 cites W2784966818 @default.
- W2991393314 cites W2786647801 @default.
- W2991393314 cites W2799899433 @default.
- W2991393314 cites W2911373849 @default.
- W2991393314 cites W2950657052 @default.
- W2991393314 cites W2951290763 @default.
- W2991393314 cites W4247018304 @default.
- W2991393314 doi "https://doi.org/10.5194/tc-14-2409-2020" @default.
- W2991393314 hasPublicationYear "2020" @default.
- W2991393314 type Work @default.
- W2991393314 sameAs 2991393314 @default.
- W2991393314 citedByCount "6" @default.
- W2991393314 countsByYear W29913933142020 @default.
- W2991393314 countsByYear W29913933142021 @default.
- W2991393314 countsByYear W29913933142022 @default.
- W2991393314 crossrefType "journal-article" @default.
- W2991393314 hasAuthorship W2991393314A5001566161 @default.
- W2991393314 hasAuthorship W2991393314A5002203059 @default.
- W2991393314 hasAuthorship W2991393314A5042851193 @default.
- W2991393314 hasAuthorship W2991393314A5054767802 @default.
- W2991393314 hasAuthorship W2991393314A5089602850 @default.
- W2991393314 hasBestOaLocation W29913933141 @default.
- W2991393314 hasConcept C105795698 @default.
- W2991393314 hasConcept C106131492 @default.
- W2991393314 hasConcept C111368507 @default.
- W2991393314 hasConcept C121332964 @default.
- W2991393314 hasConcept C127313418 @default.
- W2991393314 hasConcept C12997251 @default.
- W2991393314 hasConcept C136894858 @default.
- W2991393314 hasConcept C140779682 @default.
- W2991393314 hasConcept C153294291 @default.
- W2991393314 hasConcept C161798024 @default.
- W2991393314 hasConcept C197640229 @default.
- W2991393314 hasConcept C205649164 @default.
- W2991393314 hasConcept C26873012 @default.
- W2991393314 hasConcept C31972630 @default.
- W2991393314 hasConcept C33923547 @default.