Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991394522> ?p ?o ?g. }
- W2991394522 abstract "Evaluating object segmentation is a topic of great interest for shape comparison techniques. In this work, ad-hoc metrics for a detailed segmentation analysis and a novel keypoint based method for comparing pairs of shapes are presented. As references, two different segmentation approaches were used: a handmade segmentation and an automatic one based on a Convolutional Neural Network (CNN). The proposed comparison approach consists of a combination between a keypoint extractor and an invariant scale shape identifier. The overall validation process is established according to different steps, which allow to measure the similarity between shapes. First, Reinforced Matched (RM) and Reinforced Ratio (RR) strategies are implemented. Moreover, five different state-of-the-art keypoint extractors are compared, i.e., SIFT, SURF, ORB, A-KAZE, and BRISK. Experimental tests were performed on a popular collection of images, i.e., the Berkeley Segmentation Dataset and Benchmark 300 (BSDS300), which contains shapes segmented both manually and automatically. The experimental results have shown the effectiveness of the proposed method." @default.
- W2991394522 created "2019-12-05" @default.
- W2991394522 creator A5004053573 @default.
- W2991394522 creator A5012610761 @default.
- W2991394522 creator A5025531933 @default.
- W2991394522 creator A5028447681 @default.
- W2991394522 creator A5032721141 @default.
- W2991394522 creator A5064758488 @default.
- W2991394522 creator A5069310487 @default.
- W2991394522 creator A5078277002 @default.
- W2991394522 date "2019-10-01" @default.
- W2991394522 modified "2023-09-27" @default.
- W2991394522 title "A Shape Comparison Reinforcement Method Based on Feature Extractors and F1-Score" @default.
- W2991394522 cites W178995947 @default.
- W2991394522 cites W1981385563 @default.
- W2991394522 cites W2048710758 @default.
- W2991394522 cites W2104520769 @default.
- W2991394522 cites W2115700099 @default.
- W2991394522 cites W2117228865 @default.
- W2991394522 cites W2119605622 @default.
- W2991394522 cites W2141584146 @default.
- W2991394522 cites W2148344737 @default.
- W2991394522 cites W2151103935 @default.
- W2991394522 cites W2161663128 @default.
- W2991394522 cites W2295962867 @default.
- W2991394522 cites W2346957300 @default.
- W2991394522 cites W2467119921 @default.
- W2991394522 cites W2545687911 @default.
- W2991394522 cites W2556513418 @default.
- W2991394522 cites W2578254634 @default.
- W2991394522 cites W2765879244 @default.
- W2991394522 cites W2767019433 @default.
- W2991394522 cites W2788294449 @default.
- W2991394522 cites W2789798131 @default.
- W2991394522 cites W2799112149 @default.
- W2991394522 cites W2891656071 @default.
- W2991394522 cites W2903273679 @default.
- W2991394522 cites W2913429812 @default.
- W2991394522 cites W2950119225 @default.
- W2991394522 cites W2960774962 @default.
- W2991394522 cites W2962564092 @default.
- W2991394522 cites W3099611110 @default.
- W2991394522 doi "https://doi.org/10.1109/smc.2019.8914601" @default.
- W2991394522 hasPublicationYear "2019" @default.
- W2991394522 type Work @default.
- W2991394522 sameAs 2991394522 @default.
- W2991394522 citedByCount "4" @default.
- W2991394522 countsByYear W29913945222021 @default.
- W2991394522 countsByYear W29913945222022 @default.
- W2991394522 crossrefType "proceedings-article" @default.
- W2991394522 hasAuthorship W2991394522A5004053573 @default.
- W2991394522 hasAuthorship W2991394522A5012610761 @default.
- W2991394522 hasAuthorship W2991394522A5025531933 @default.
- W2991394522 hasAuthorship W2991394522A5028447681 @default.
- W2991394522 hasAuthorship W2991394522A5032721141 @default.
- W2991394522 hasAuthorship W2991394522A5064758488 @default.
- W2991394522 hasAuthorship W2991394522A5069310487 @default.
- W2991394522 hasAuthorship W2991394522A5078277002 @default.
- W2991394522 hasConcept C103278499 @default.
- W2991394522 hasConcept C115961682 @default.
- W2991394522 hasConcept C117978034 @default.
- W2991394522 hasConcept C124504099 @default.
- W2991394522 hasConcept C127413603 @default.
- W2991394522 hasConcept C153180895 @default.
- W2991394522 hasConcept C154945302 @default.
- W2991394522 hasConcept C21880701 @default.
- W2991394522 hasConcept C31972630 @default.
- W2991394522 hasConcept C41008148 @default.
- W2991394522 hasConcept C52622490 @default.
- W2991394522 hasConcept C61265191 @default.
- W2991394522 hasConcept C81363708 @default.
- W2991394522 hasConcept C89600930 @default.
- W2991394522 hasConceptScore W2991394522C103278499 @default.
- W2991394522 hasConceptScore W2991394522C115961682 @default.
- W2991394522 hasConceptScore W2991394522C117978034 @default.
- W2991394522 hasConceptScore W2991394522C124504099 @default.
- W2991394522 hasConceptScore W2991394522C127413603 @default.
- W2991394522 hasConceptScore W2991394522C153180895 @default.
- W2991394522 hasConceptScore W2991394522C154945302 @default.
- W2991394522 hasConceptScore W2991394522C21880701 @default.
- W2991394522 hasConceptScore W2991394522C31972630 @default.
- W2991394522 hasConceptScore W2991394522C41008148 @default.
- W2991394522 hasConceptScore W2991394522C52622490 @default.
- W2991394522 hasConceptScore W2991394522C61265191 @default.
- W2991394522 hasConceptScore W2991394522C81363708 @default.
- W2991394522 hasConceptScore W2991394522C89600930 @default.
- W2991394522 hasLocation W29913945221 @default.
- W2991394522 hasOpenAccess W2991394522 @default.
- W2991394522 hasPrimaryLocation W29913945221 @default.
- W2991394522 hasRelatedWork W10116868 @default.
- W2991394522 hasRelatedWork W10746426 @default.
- W2991394522 hasRelatedWork W12868288 @default.
- W2991394522 hasRelatedWork W13815759 @default.
- W2991394522 hasRelatedWork W2233117 @default.
- W2991394522 hasRelatedWork W2585641 @default.
- W2991394522 hasRelatedWork W4262719 @default.
- W2991394522 hasRelatedWork W5859415 @default.
- W2991394522 hasRelatedWork W6212567 @default.
- W2991394522 hasRelatedWork W6930659 @default.
- W2991394522 isParatext "false" @default.