Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991440020> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2991440020 abstract "A group G is called subgroup conjugacy separable (SCS) if for any two f.g. non-conjugate subgroups H and H' of G, there exists a finite quotient E of G such that the images of H and H' remain non-conjugate in E. In this thesis we will prove that, that any finitely generated virtually free group is SCS. This proof uses essentially covering theory of graphs of groups. Note that the introduction and the elaboration of this covering theory will be done as well in this thesis. As a direct consequence of the established formula for counting the index of a finite index subgroup of the fundamental group of a graph of groups, we receive a formula for counting the rank of a free finite index subgroup of a virtually free group in terms of the index of the corresponding subgroup and the finite orders of the vertex groups of the original finite graph of finite groups. For doing this we make use of the well-known fact that any f.g. virtually free group splits as a finite graph of finite groups. Furthermore in the context of covering theory of graphs of groups, we will give a reasonable definition for the group of Decktransformations associated to a cover of a graph of groups and we will establish a connection between this group and the normalizer of the represented subgroup. Later on the covering theory of graphs of groups enables us to prove the subgroup separability for some special kinds of towers over a finitely generated virtually-free group. Note that a group G is called subgroup separable if for any subgroup U of G and any element g of G, which does not lie in U, there exists a finite index subgroup H of G containing U satisfying that g does not lie in H. Afterwards we are going to show that Fuchsian Groups are SCS. This proof uses essentially covering theory of 2-dimensional orbifolds. Last but not least we will use this statement to show that the fundamental group of any totally orientable Seifert fibered space is SCS.%%%%Eine Gruppe G ist untergruppenkonjugationsseparabel (SCS), falls fur je zwei endlich erzeugte, nicht konjugierte Untergruppen H und H' von G ein endlicher Quotient E von G existiert, s.d. die Bilder von H und H' in E nicht konjugiert sind. Wir werden in dieser Arbeit einen Beweis dafur liefern, dass endlich erzeugte virtuell freie Gruppen SCS sind. Dieser benutzt in erster Linie Uberlagerungstheorie von Graphen von Gruppen, welche in dieser Arbeit auch ausfuhrlich eingefuhrt und ausgeabreitet wird. Als eine direkte Konsequenz der so gewonnenen Formel fur den Index einer von einer Uberlagerung von Graphen von Gruppen reprasentierten Untergruppe erhielten wir eine Formel fur den Rang einer freien Unterguppe von endlichem Index in einer endlich erzeugten virtuell freien Gruppe. Dafur nutzten wir die Tatsache aus, dass jede endlich erzeugte virtuell freie Gruppe als Fundamentalgruppe eines endlichen Graphen von endlichen Gruppen aufgefasst werden kann. Des Weiteren werden wir im Sinne der erarbeiteten Uberlagerungstheorie von Graphen von Gruppen eine sinnvolle Definition der Decktransformationsgruppe einer…" @default.
- W2991440020 created "2019-12-05" @default.
- W2991440020 creator A5028040415 @default.
- W2991440020 date "2018-04-16" @default.
- W2991440020 modified "2023-09-26" @default.
- W2991440020 title "Separability Properties and Finite-Sheeted Coverings of Graphs of Groups and 2-dimensional Orbifolds" @default.
- W2991440020 hasPublicationYear "2018" @default.
- W2991440020 type Work @default.
- W2991440020 sameAs 2991440020 @default.
- W2991440020 citedByCount "0" @default.
- W2991440020 crossrefType "dissertation" @default.
- W2991440020 hasAuthorship W2991440020A5028040415 @default.
- W2991440020 hasConcept C105515060 @default.
- W2991440020 hasConcept C114614502 @default.
- W2991440020 hasConcept C118615104 @default.
- W2991440020 hasConcept C132525143 @default.
- W2991440020 hasConcept C178790620 @default.
- W2991440020 hasConcept C185592680 @default.
- W2991440020 hasConcept C199422724 @default.
- W2991440020 hasConcept C2777404646 @default.
- W2991440020 hasConcept C2781311116 @default.
- W2991440020 hasConcept C30236536 @default.
- W2991440020 hasConcept C33923547 @default.
- W2991440020 hasConcept C55792552 @default.
- W2991440020 hasConcept C80899671 @default.
- W2991440020 hasConcept C87945829 @default.
- W2991440020 hasConceptScore W2991440020C105515060 @default.
- W2991440020 hasConceptScore W2991440020C114614502 @default.
- W2991440020 hasConceptScore W2991440020C118615104 @default.
- W2991440020 hasConceptScore W2991440020C132525143 @default.
- W2991440020 hasConceptScore W2991440020C178790620 @default.
- W2991440020 hasConceptScore W2991440020C185592680 @default.
- W2991440020 hasConceptScore W2991440020C199422724 @default.
- W2991440020 hasConceptScore W2991440020C2777404646 @default.
- W2991440020 hasConceptScore W2991440020C2781311116 @default.
- W2991440020 hasConceptScore W2991440020C30236536 @default.
- W2991440020 hasConceptScore W2991440020C33923547 @default.
- W2991440020 hasConceptScore W2991440020C55792552 @default.
- W2991440020 hasConceptScore W2991440020C80899671 @default.
- W2991440020 hasConceptScore W2991440020C87945829 @default.
- W2991440020 hasLocation W29914400201 @default.
- W2991440020 hasOpenAccess W2991440020 @default.
- W2991440020 hasPrimaryLocation W29914400201 @default.
- W2991440020 hasRelatedWork W1501752144 @default.
- W2991440020 hasRelatedWork W1506201687 @default.
- W2991440020 hasRelatedWork W1520060326 @default.
- W2991440020 hasRelatedWork W1565020062 @default.
- W2991440020 hasRelatedWork W1569432026 @default.
- W2991440020 hasRelatedWork W1583037209 @default.
- W2991440020 hasRelatedWork W1603086543 @default.
- W2991440020 hasRelatedWork W1934257058 @default.
- W2991440020 hasRelatedWork W2040606500 @default.
- W2991440020 hasRelatedWork W2075505402 @default.
- W2991440020 hasRelatedWork W2098301254 @default.
- W2991440020 hasRelatedWork W2113983768 @default.
- W2991440020 hasRelatedWork W2290738409 @default.
- W2991440020 hasRelatedWork W2809645547 @default.
- W2991440020 hasRelatedWork W2940829401 @default.
- W2991440020 hasRelatedWork W2941564302 @default.
- W2991440020 hasRelatedWork W2961549612 @default.
- W2991440020 hasRelatedWork W3037392305 @default.
- W2991440020 hasRelatedWork W3196006783 @default.
- W2991440020 hasRelatedWork W2473903163 @default.
- W2991440020 isParatext "false" @default.
- W2991440020 isRetracted "false" @default.
- W2991440020 magId "2991440020" @default.
- W2991440020 workType "dissertation" @default.