Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991453428> ?p ?o ?g. }
- W2991453428 endingPage "105" @default.
- W2991453428 startingPage "95" @default.
- W2991453428 abstract "The clinical team attending to a patient upon a diagnosis is faced with two main questions: what treatment, and at what dose? Clinical trials' results provide the basis for guidance and support for official protocols that clinicians use to base their decisions upon. However, individuals rarely demonstrate the reported response from relevant clinical trials, often the average from a group representing a population or subpopulation. The decision complexity increases with combination treatments where drugs administered together can interact with each other, which is often the case. Additionally, the individual's response to the treatment varies over time with the changes in his or her condition, whether via the indication or physiology. In practice, the drug and the dose selection depend greatly on the medical protocol of the healthcare provider and the medical team's experience. As such, the results are inherently varied and often suboptimal. Big data approaches have emerged as an excellent decision-making support tool, but their application is limited by multiple challenges, the main one being the availability of sufficiently big datasets with good quality, representative information. An alternative approach-phenotypic personalized medicine (PPM)-finds an appropriate drug combination (quadratic phenotypic optimization platform [QPOP]) and an appropriate dosing strategy over time (CURATE.AI) based on small data collected exclusively from the treated individual. PPM-based approaches have demonstrated superior results over the current standard of care. The side effects are limited while the desired output is maximized, which directly translates into improving the length and quality of individuals' lives." @default.
- W2991453428 created "2019-12-05" @default.
- W2991453428 creator A5016752776 @default.
- W2991453428 creator A5084180011 @default.
- W2991453428 creator A5085024060 @default.
- W2991453428 date "2020-04-01" @default.
- W2991453428 modified "2023-10-17" @default.
- W2991453428 title "CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence" @default.
- W2991453428 cites W1524110242 @default.
- W2991453428 cites W1530654535 @default.
- W2991453428 cites W1964485971 @default.
- W2991453428 cites W1965951432 @default.
- W2991453428 cites W1984965353 @default.
- W2991453428 cites W1988782368 @default.
- W2991453428 cites W2025783786 @default.
- W2991453428 cites W2033609349 @default.
- W2991453428 cites W2039904359 @default.
- W2991453428 cites W2040410086 @default.
- W2991453428 cites W2041535798 @default.
- W2991453428 cites W2044347649 @default.
- W2991453428 cites W2048203189 @default.
- W2991453428 cites W2053540049 @default.
- W2991453428 cites W2054882297 @default.
- W2991453428 cites W2079917104 @default.
- W2991453428 cites W2082302018 @default.
- W2991453428 cites W2100338042 @default.
- W2991453428 cites W2121725784 @default.
- W2991453428 cites W2122331546 @default.
- W2991453428 cites W2130960804 @default.
- W2991453428 cites W2133197025 @default.
- W2991453428 cites W2156761481 @default.
- W2991453428 cites W2157713892 @default.
- W2991453428 cites W2158011874 @default.
- W2991453428 cites W2158019678 @default.
- W2991453428 cites W2162830064 @default.
- W2991453428 cites W2166918329 @default.
- W2991453428 cites W2167331614 @default.
- W2991453428 cites W2194348484 @default.
- W2991453428 cites W2206083877 @default.
- W2991453428 cites W2254099994 @default.
- W2991453428 cites W2281881217 @default.
- W2991453428 cites W2329380329 @default.
- W2991453428 cites W2341256599 @default.
- W2991453428 cites W2415841860 @default.
- W2991453428 cites W2523840519 @default.
- W2991453428 cites W2525984666 @default.
- W2991453428 cites W2560368655 @default.
- W2991453428 cites W2582313469 @default.
- W2991453428 cites W2593330790 @default.
- W2991453428 cites W2605442047 @default.
- W2991453428 cites W2664267452 @default.
- W2991453428 cites W2715834350 @default.
- W2991453428 cites W2727650337 @default.
- W2991453428 cites W2742565536 @default.
- W2991453428 cites W2762020729 @default.
- W2991453428 cites W2767257049 @default.
- W2991453428 cites W2774458438 @default.
- W2991453428 cites W2786684538 @default.
- W2991453428 cites W2790360052 @default.
- W2991453428 cites W2792145227 @default.
- W2991453428 cites W2802924568 @default.
- W2991453428 cites W2803757405 @default.
- W2991453428 cites W2804892728 @default.
- W2991453428 cites W2804943172 @default.
- W2991453428 cites W2805921185 @default.
- W2991453428 cites W2809628897 @default.
- W2991453428 cites W2810059276 @default.
- W2991453428 cites W2810609012 @default.
- W2991453428 cites W2880053940 @default.
- W2991453428 cites W2883147591 @default.
- W2991453428 cites W2885322118 @default.
- W2991453428 cites W2888301646 @default.
- W2991453428 cites W2888717505 @default.
- W2991453428 cites W2889063261 @default.
- W2991453428 cites W2889450541 @default.
- W2991453428 cites W2890389577 @default.
- W2991453428 cites W2893366129 @default.
- W2991453428 cites W2894917609 @default.
- W2991453428 cites W2895036973 @default.
- W2991453428 cites W2895510144 @default.
- W2991453428 cites W2896969348 @default.
- W2991453428 cites W2897012346 @default.
- W2991453428 cites W2897216753 @default.
- W2991453428 cites W2898428119 @default.
- W2991453428 cites W2898936434 @default.
- W2991453428 cites W2901021818 @default.
- W2991453428 cites W2901291633 @default.
- W2991453428 cites W2902520129 @default.
- W2991453428 cites W2902644322 @default.
- W2991453428 cites W2903203911 @default.
- W2991453428 cites W2903220004 @default.
- W2991453428 cites W2903540225 @default.
- W2991453428 cites W2904251400 @default.
- W2991453428 cites W2905108025 @default.
- W2991453428 cites W2912189910 @default.
- W2991453428 cites W2913116192 @default.
- W2991453428 cites W2913533009 @default.
- W2991453428 cites W2917273489 @default.