Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991482861> ?p ?o ?g. }
- W2991482861 endingPage "135387" @default.
- W2991482861 startingPage "135387" @default.
- W2991482861 abstract "Precise and spatially explicit regional estimates of soil salinity are necessary to efficiently management and utilise limited land and water resources. Despite advances achieved in remote sensing over the past century, knowledge about the distribution and severity of soil salinization in economically important areas, such as oasis agroecosystems and desert-oasis ecotones (OADoE), is currently limited. An example of an area is southern Xinjiang, where the OADoE has a high anthropogenic influence. This study was conducted with the aim of mapping soil salinity in typical OADoE using remote sensing and machine learning techniques (Cubist and Random Forest, RF). A range of covariates was obtained from the multi-temporal Landsat-8 operational land imager (OLI) satellite for the period from 2013 to 2018. The values of coefficients of determination (R2), Lin’s concordance correlation coefficient, root mean square error, and relative root mean squared error values, were 0.78, 0.87, 9.59, and 0.76, respectively, for the Cubist and 0.78, 0.86, 9.79, and 0.78, respectively, for RF models. The slope of the linear fitting equation was higher for the Cubist model (0.75) than for RF (0.69). The explanatory power of Cubist and RF for soil salinity variation were 33.22% and 31.41% in the agroecosystem, and 72.25% and 71.66% in desert-oasis ecotone, respectively. For the agroecosystem, the range of the predicted values for 89.13% (Cubist) and 84.78% (RF) of sample was controlled within the same observational range at an interval of 0–5 dS m−1. Compared to single-year data (from 2013 to 2018), the ability to account for model spatial variability in soil salinity based on multi-year Landsat images was increased by 16%–35%. According to the variable importance evaluation, soil-related indices are the most important predictor variables, followed by vegetation, topography, landform, and land use, with relative importance values of 60%, 21%, 16%, and 3%, respectively. The predicted map was also broadly consistent with those obtained for Xinjiang in the Harmonized World Soil Database (HWSD) from the second national soil survey of China conducted from 1984 to 1997. The results also showed that the average value of the study area is 8.10 dS m−1 based on the Cubist-based map whereas that of the HWSD is 10.60 dS m−1, this implied that the overall salinity level has reduced by 23.58%. The methodological framework presented covers all prediction process steps and has considerable potential to be used in future soil salinity mapping at large scales for other similar region as OADoEs. The map derived from the Cubist/RF model revealed more detailed variation information about spatial distribution of the soil salinity compared to HWSD, and can further assist with decision-making when planning and utilising on existing soil and water resources in OADoEs." @default.
- W2991482861 created "2019-12-05" @default.
- W2991482861 creator A5006776266 @default.
- W2991482861 creator A5016449371 @default.
- W2991482861 creator A5022398344 @default.
- W2991482861 creator A5064540523 @default.
- W2991482861 creator A5077536887 @default.
- W2991482861 creator A5086529957 @default.
- W2991482861 date "2020-05-01" @default.
- W2991482861 modified "2023-10-17" @default.
- W2991482861 title "Updated information on soil salinity in a typical oasis agroecosystem and desert-oasis ecotone: Case study conducted along the Tarim River, China" @default.
- W2991482861 cites W1497486772 @default.
- W2991482861 cites W1570514593 @default.
- W2991482861 cites W1590169263 @default.
- W2991482861 cites W1729109263 @default.
- W2991482861 cites W1821210865 @default.
- W2991482861 cites W1969589719 @default.
- W2991482861 cites W1984282899 @default.
- W2991482861 cites W2013741687 @default.
- W2991482861 cites W2019706907 @default.
- W2991482861 cites W2023312901 @default.
- W2991482861 cites W2027331267 @default.
- W2991482861 cites W2034334268 @default.
- W2991482861 cites W2038913727 @default.
- W2991482861 cites W2040611841 @default.
- W2991482861 cites W2054325787 @default.
- W2991482861 cites W2057742742 @default.
- W2991482861 cites W2061253410 @default.
- W2991482861 cites W2061548250 @default.
- W2991482861 cites W2066722804 @default.
- W2991482861 cites W2069358120 @default.
- W2991482861 cites W2075769704 @default.
- W2991482861 cites W2079770016 @default.
- W2991482861 cites W2083981672 @default.
- W2991482861 cites W2084846901 @default.
- W2991482861 cites W2089097786 @default.
- W2991482861 cites W2089568739 @default.
- W2991482861 cites W2094440806 @default.
- W2991482861 cites W2094677081 @default.
- W2991482861 cites W2094760192 @default.
- W2991482861 cites W2096990904 @default.
- W2991482861 cites W2117416558 @default.
- W2991482861 cites W2122560194 @default.
- W2991482861 cites W2126902408 @default.
- W2991482861 cites W2155261478 @default.
- W2991482861 cites W2156419436 @default.
- W2991482861 cites W2161548576 @default.
- W2991482861 cites W2186294614 @default.
- W2991482861 cites W2205945645 @default.
- W2991482861 cites W2274117189 @default.
- W2991482861 cites W2301692565 @default.
- W2991482861 cites W2312032020 @default.
- W2991482861 cites W2529290889 @default.
- W2991482861 cites W2554960095 @default.
- W2991482861 cites W2561123574 @default.
- W2991482861 cites W2567441734 @default.
- W2991482861 cites W2588003345 @default.
- W2991482861 cites W2598382903 @default.
- W2991482861 cites W2753753116 @default.
- W2991482861 cites W2769706980 @default.
- W2991482861 cites W2776151220 @default.
- W2991482861 cites W2789226993 @default.
- W2991482861 cites W2790860706 @default.
- W2991482861 cites W2793639001 @default.
- W2991482861 cites W2795017966 @default.
- W2991482861 cites W2796350662 @default.
- W2991482861 cites W2805739271 @default.
- W2991482861 cites W2884834553 @default.
- W2991482861 cites W2885745521 @default.
- W2991482861 cites W2886246257 @default.
- W2991482861 cites W2893301845 @default.
- W2991482861 cites W2900600890 @default.
- W2991482861 cites W2908031888 @default.
- W2991482861 cites W2909107099 @default.
- W2991482861 cites W2909415058 @default.
- W2991482861 cites W2911964244 @default.
- W2991482861 cites W2925076874 @default.
- W2991482861 cites W2931266020 @default.
- W2991482861 cites W2944146241 @default.
- W2991482861 cites W2958372549 @default.
- W2991482861 cites W2963097326 @default.
- W2991482861 cites W2976738364 @default.
- W2991482861 cites W3140483423 @default.
- W2991482861 cites W343531634 @default.
- W2991482861 cites W4249972823 @default.
- W2991482861 cites W92141931 @default.
- W2991482861 doi "https://doi.org/10.1016/j.scitotenv.2019.135387" @default.
- W2991482861 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31839319" @default.
- W2991482861 hasPublicationYear "2020" @default.
- W2991482861 type Work @default.
- W2991482861 sameAs 2991482861 @default.
- W2991482861 citedByCount "20" @default.
- W2991482861 countsByYear W29914828612020 @default.
- W2991482861 countsByYear W29914828612021 @default.
- W2991482861 countsByYear W29914828612022 @default.
- W2991482861 countsByYear W29914828612023 @default.
- W2991482861 crossrefType "journal-article" @default.
- W2991482861 hasAuthorship W2991482861A5006776266 @default.