Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991484432> ?p ?o ?g. }
- W2991484432 abstract "Pedestrian behavior anticipation is a key challenge in the design of assistive and autonomous driving systems suitable for urban environments. An intelligent system should be able to understand the intentions or underlying motives of pedestrians and to predict their forthcoming actions. To date, only a few public datasets were proposed for the purpose of studying pedestrian behavior prediction in the context of intelligent driving. To this end, we propose a novel large-scale dataset designed for pedestrian intention estimation (PIE). We conducted a large-scale human experiment to establish human reference data for pedestrian intention in traffic scenes. We propose models for estimating pedestrian crossing intention and predicting their future trajectory. Our intention estimation model achieves 79% accuracy and our trajectory prediction algorithm outperforms state-of-the-art by 26% on the proposed dataset. We further show that combining pedestrian intention with observed motion improves trajectory prediction. The dataset and models are available at http://data.nvision2.eecs.yorku.ca/PIE_dataset/." @default.
- W2991484432 created "2019-12-05" @default.
- W2991484432 creator A5012752787 @default.
- W2991484432 creator A5030550983 @default.
- W2991484432 creator A5040772199 @default.
- W2991484432 creator A5072681668 @default.
- W2991484432 date "2019-10-01" @default.
- W2991484432 modified "2023-10-10" @default.
- W2991484432 title "PIE: A Large-Scale Dataset and Models for Pedestrian Intention Estimation and Trajectory Prediction" @default.
- W2991484432 cites W155097506 @default.
- W2991484432 cites W1579387951 @default.
- W2991484432 cites W1605929701 @default.
- W2991484432 cites W1970206276 @default.
- W2991484432 cites W2061773916 @default.
- W2991484432 cites W2105934661 @default.
- W2991484432 cites W2107775979 @default.
- W2991484432 cites W2117539524 @default.
- W2991484432 cites W2126413547 @default.
- W2991484432 cites W2141403362 @default.
- W2991484432 cites W2142996775 @default.
- W2991484432 cites W2146183743 @default.
- W2991484432 cites W2150066425 @default.
- W2991484432 cites W2245440101 @default.
- W2991484432 cites W2424778531 @default.
- W2991484432 cites W2431993264 @default.
- W2991484432 cites W2519586580 @default.
- W2991484432 cites W2561603333 @default.
- W2991484432 cites W2565986202 @default.
- W2991484432 cites W2592496287 @default.
- W2991484432 cites W2594507094 @default.
- W2991484432 cites W2607296803 @default.
- W2991484432 cites W2631888524 @default.
- W2991484432 cites W2739251211 @default.
- W2991484432 cites W2749658623 @default.
- W2991484432 cites W2758850938 @default.
- W2991484432 cites W2769735038 @default.
- W2991484432 cites W2771583656 @default.
- W2991484432 cites W2779943048 @default.
- W2991484432 cites W2801667201 @default.
- W2991484432 cites W2883770893 @default.
- W2991484432 cites W2895189911 @default.
- W2991484432 cites W2962839378 @default.
- W2991484432 cites W2963906196 @default.
- W2991484432 cites W2964217160 @default.
- W2991484432 cites W2964303162 @default.
- W2991484432 doi "https://doi.org/10.1109/iccv.2019.00636" @default.
- W2991484432 hasPublicationYear "2019" @default.
- W2991484432 type Work @default.
- W2991484432 sameAs 2991484432 @default.
- W2991484432 citedByCount "151" @default.
- W2991484432 countsByYear W29914844322020 @default.
- W2991484432 countsByYear W29914844322021 @default.
- W2991484432 countsByYear W29914844322022 @default.
- W2991484432 countsByYear W29914844322023 @default.
- W2991484432 crossrefType "proceedings-article" @default.
- W2991484432 hasAuthorship W2991484432A5012752787 @default.
- W2991484432 hasAuthorship W2991484432A5030550983 @default.
- W2991484432 hasAuthorship W2991484432A5040772199 @default.
- W2991484432 hasAuthorship W2991484432A5072681668 @default.
- W2991484432 hasConcept C104114177 @default.
- W2991484432 hasConcept C117035363 @default.
- W2991484432 hasConcept C119857082 @default.
- W2991484432 hasConcept C121332964 @default.
- W2991484432 hasConcept C124101348 @default.
- W2991484432 hasConcept C127413603 @default.
- W2991484432 hasConcept C1276947 @default.
- W2991484432 hasConcept C13662910 @default.
- W2991484432 hasConcept C154945302 @default.
- W2991484432 hasConcept C166957645 @default.
- W2991484432 hasConcept C176777502 @default.
- W2991484432 hasConcept C201995342 @default.
- W2991484432 hasConcept C205649164 @default.
- W2991484432 hasConcept C22212356 @default.
- W2991484432 hasConcept C26517878 @default.
- W2991484432 hasConcept C2777113093 @default.
- W2991484432 hasConcept C2778755073 @default.
- W2991484432 hasConcept C2779343474 @default.
- W2991484432 hasConcept C38652104 @default.
- W2991484432 hasConcept C41008148 @default.
- W2991484432 hasConcept C58640448 @default.
- W2991484432 hasConcept C96250715 @default.
- W2991484432 hasConceptScore W2991484432C104114177 @default.
- W2991484432 hasConceptScore W2991484432C117035363 @default.
- W2991484432 hasConceptScore W2991484432C119857082 @default.
- W2991484432 hasConceptScore W2991484432C121332964 @default.
- W2991484432 hasConceptScore W2991484432C124101348 @default.
- W2991484432 hasConceptScore W2991484432C127413603 @default.
- W2991484432 hasConceptScore W2991484432C1276947 @default.
- W2991484432 hasConceptScore W2991484432C13662910 @default.
- W2991484432 hasConceptScore W2991484432C154945302 @default.
- W2991484432 hasConceptScore W2991484432C166957645 @default.
- W2991484432 hasConceptScore W2991484432C176777502 @default.
- W2991484432 hasConceptScore W2991484432C201995342 @default.
- W2991484432 hasConceptScore W2991484432C205649164 @default.
- W2991484432 hasConceptScore W2991484432C22212356 @default.
- W2991484432 hasConceptScore W2991484432C26517878 @default.
- W2991484432 hasConceptScore W2991484432C2777113093 @default.
- W2991484432 hasConceptScore W2991484432C2778755073 @default.
- W2991484432 hasConceptScore W2991484432C2779343474 @default.
- W2991484432 hasConceptScore W2991484432C38652104 @default.