Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991491027> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2991491027 endingPage "28" @default.
- W2991491027 startingPage "18" @default.
- W2991491027 abstract "Future Science Book SeriesHot Topics in Metabolomics: Food and Nutrition Metabolomics of genetically modified cropsThomas Frank & Karl-Heinz EngelThomas FrankThomas Frank studied technology and biotechnology of foods and received his PhD degree at the Technische Universität München (Germany). He is a Senior Researcher under Karl-Heinz Engel´s chair and works on the development and application of different metabolomics techniques to the investigation of quality and safety of various plant-derived genetically modified and non-genetically modified crops. He has published his results in high-impact peer-reviewed journals, book chapters and in the form of invited speeches at several symposia.Search for more papers by this author & Karl-Heinz EngelKarl-Heinz Engel studied food chemistry at the TH Karlsruhe (Germany) and received his PhD at the TU Berlin (Germany). After a research stay at the Western Regional Research Center of the US Department of Agriculture in Albany (CA, USA), he completed his qualification as University Professor in Berlin. Prior to his appointment as Professor at the Technische Universität München, he was Head of the section ‘Novel Foods and Genetic Engineering’ at the Federal Institute for Health Protection of Consumers and Veterinary Medicine (Berlin, Germany). He is also a member of scientific panels of the European Food Safety Authority (EFSA) where he is mainly involved in the safety assessment of flavorings and novel foods. His research centers on analytical aspects related to food safety and authenticity. His area of expertise is reflected by several hundred published journal articles, book chapters, scientific EFSA opinions and invited speeches.Search for more papers by this authorPublished Online:17 Dec 2013https://doi.org/10.4155/ebo.13.323AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinkedInRedditEmail View chapterAbstract: Metabolomics – that is, the unbiased and nontargeted analysis of the metabolome in an organic tissue – has been suggested as a suitable tool for the comprehensive investigation of genetically modified (GM) crop metabolite profiles. This chapter gives a brief overview on selected case studies where metabolomics has been applied to the comparative investigation of various GM crops and their corresponding non-GM counterparts. In addition, the chapter outlines the impact of genetic modification in the light of the naturally occurring metabolic variability. Before GM crops can be placed on the market, they have to be subjected to a comprehensive assessment. Potential advantages and limitations of the application of nontargeted metabolomics-based analytical approaches in this procedure are outlined. References1 Noteborn HPJM , Lommen A , van der Jagt RC et al. Chemical fingerprinting for the evaluation of unintended secondary metabolic changes in transgenic food crops . J. Biotechnol. 77 (1) , 103 – 114 (2000) . Crossref, Medline, CAS, Google Scholar2 Roessner U , Luedemann A , Brust D et al. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems . Plant Cell 13 (1) , 11 – 29 (2001) . Crossref, Medline, CAS, Google Scholar3 Shintu L , Le Gall G , Colquhoun IJ . Metabolomics and the detection of unintended effects in genetically modified crops. In: Plant-Derived Natural Products. Osbourn AE, Lanzotti V (Eds). Springer Science + Business Media LLC, Dordrecht, The Netherlands (2009) . Google Scholar4 Ricroch AE , Bergé JB , Kuntz M . Evaluation of genetically engineered crops using transcriptomic, proteomic, and metabolomic profiling techniques . Plant Physiol. 155 (4) , 1752 – 1761 (2011) . Crossref, Medline, CAS, Google Scholar5 Manetti C , Biachetti C , Casciani L et al. A metabonomic study of transgenic maize (Zea mays) seeds revealed variations in osmolytes and branched amino acids . J. Experimental Botany 57 (11) , 2613 – 2625 (2006) . Crossref, Medline, CAS, Google Scholar6 Leon C , Rodriguez-Meizoso I , Lucio M et al. Metabolomics of transgenic maize combining Fourier transform-ion cyclotron resonance-mass spectrometry, capillary electrophoresis-mass spectrometry and pressurized liquid extraction . J. Chromatog. A 1216 (43) , 7314 – 7323 (2009) . Crossref, Medline, CAS, Google Scholar7 Frank T , Röhlig RM , Davies HV et al. Metabolite profiling of maize kernels – genetic modification versus environmental influence . J. Agric. Food Chem. 60 (12) , 3005 – 3012 (2012) . Crossref, Medline, CAS, Google Scholar8 Takahashi H , Hotta Y , Hayashi M et al. High throughput metabolome and proteome analysis of transgenic rice plants (Oryza sativa L.) . Plant Biotechnol. 22 (1) , 47 – 50 (2005) . Crossref, CAS, Google Scholar9 Zhou J , Ma C , Xu H et al. Metabolic profiling of transgenic rice with cryIAc and sck genes: an evaluation of unintended effects at metabolic level by using GC–FID and GC–MS . J. Chromatog. B 877 (8–9) , 725 – 732 (2009) . Crossref, CAS, Google Scholar10 Jiao Z , Si X-X , Li G-K et al. >Unintended compositional changes in transgenic rice seeds (Oryza sativa L.) studied by spectral and chromatographic analysis coupled with chemometrics methods . J. Agric. Food Chem. 58 (3) , 1746 – 1754 (2010) . Crossref, Medline, CAS, Google Scholar11 Baker JM , Hawkins ND , Ward JL et al. A metabolomics study of substantial equivalence of field-grown genetically modified wheat . Plant Biotechnol. J. 4 (4) , 381 – 392 (2006) . Crossref, Medline, CAS, Google Scholar12 García-Villalba R , León C , Dinelli G et al. Comparative metabolomics study of transgenic versus conventional soybean using capillary electrophoresis-time-of-flight mass spectrometry . J. Chromatog. A 1195 (1–2) , 164 – 173 (2008) . Crossref, Medline, CAS, Google Scholar13 Catchpole GS , Beckmann M , Enot DP et al. Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops . PNAS 102 (40) , 14458 – 14462 (2005) . Crossref, Medline, CAS, Google Scholar14 Kim HS , Kim SW , Park YS et al. Metabolic profiles of genetically modified potatoes using a combination of metabolite fingerprinting and multivariate analysis . Biotechnol. Bioprocess Eng. 14 (6) , 738 – 747 (2009) . Crossref, CAS, Google Scholar15 Le Gall G , Colquhoun IJ , Davis AL et al. Metabolite profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification . J. Agric. Food Chem. 51 (9) , 2447 – 2456 (2003) . Crossref, Medline, CAS, Google Scholar16 Kusano M , Redestig H , Hirai T et al. Covering chemical diversity of genetically-modified tomatoes using metabolomics for objective substantial equivalence assessment . PLoS ONE 6 (2) , e16989 (2011) . Crossref, Medline, CAS, Google Scholar17 Asiago VM , Hazebroek J , Harp T et al. Effects of genetics and environment on the metabolome of commercial maize hybrids: a multisite study . J. Agric. Food Chem. 60 (46) , 11498 – 11508 (2012) . Crossref, Medline, CAS, Google Scholar18 European Food Safety Authority . EFSA Panel on genetically modified organisms (GMO). Guidance for risk assessment of food and feed from genetically modified plants, scientific opinion . EFSA J. 9 (5) , 2150 (2011) . Google Scholar19 Harrigan GG , Glenn KC , Ridley WP . Assessing the natural variability in crop composition . Regul. Toxicol. Pharmacol. 58 , S13 – S20 (2010) . Crossref, Medline, Google Scholar20 Cellini F , Chesson A , Colquhoun I et al. Unintended effects and their detection in genetically modified crops . Food Chemical Toxicol. 42 (7) , 1089 – 1125 (2004) . Crossref, Medline, CAS, Google Scholar21 Kuiper HA , Kok EJ , Engel KH . Exploitation of molecular profiling techniques for GM food safety assessment . Curr. Opin. Biotechnol. 14 (2) , 238 – 243 (2003) . Crossref, Medline, CAS, Google Scholar22 Davies H . A role for ‘omics’ technologies in food safety assessment . Food Control 21 (12) , 1601 – 1610 (2010) . Crossref, Google Scholar23 EFSA Panel on genetically modified organisms (GMO) . Scientific opinion on statistical considerations for the safety evaluation of GMOs . EFSA J. 8 , 1250 (2010) . Crossref, Google Scholar24 Herman RA , Price WD . Unintended compositional changes in genetically modified (GM) crops: 20 years of research . J. Agric. Food Chem. doi:10.1021/jf400135r (2013) (Epub ahead of print) . Crossref, Google Scholar25 Chassy BM . Can – omics inform a food safety assessment? . Regul. Toxicol. Pharmacol. 58 , S62 – S70 (2010) . Crossref, Medline, Google Scholar26 Doerrer N , Ladics G , McClain S et al. Evaluating biological variation in non-transgenic crops: executive summary from the ILSI Health and Environmental Sciences Institute workshop, November 16–17, 2009, Paris, France . Regul. Toxicol. Pharmacol. 58 , S2 – S7 (2010) . Crossref, Medline, Google ScholarWebsite101 James C. Global status of commercialized biotech/GM crops: 2012. ISAAA Brief No. 44. ISAAA. Ithaca, NY, USA (2013). www.isaaa.org/resources/publications/briefs/44/executivesummary Google ScholarFiguresReferencesRelatedDetailsCited ByLC–MS untargeted metabolomics assesses the delayed response of glufosinate treatment of transgenic glufosinate resistant (GR) buffalo grasses (Stenotaphrum secundatum L.)20 February 2021 | Metabolomics, Vol. 17, No. 3Recent developments in metabolomics-based research in understanding transgenic grass metabolism15 March 2019 | Metabolomics, Vol. 15, No. 4 Hot Topics in Metabolomics: Food and NutritionMetrics Downloaded 23 times History Published online 17 December 2013 Published in print December 2013 Information© Future Science Ltd© Future Science LtdPDF download" @default.
- W2991491027 created "2019-12-05" @default.
- W2991491027 creator A5020530713 @default.
- W2991491027 creator A5036718965 @default.
- W2991491027 date "2013-12-01" @default.
- W2991491027 modified "2023-09-30" @default.
- W2991491027 title "Metabolomics of genetically modified crops" @default.
- W2991491027 cites W1966413091 @default.
- W2991491027 cites W1967756407 @default.
- W2991491027 cites W1992504350 @default.
- W2991491027 cites W2003225506 @default.
- W2991491027 cites W2005165434 @default.
- W2991491027 cites W2008014920 @default.
- W2991491027 cites W2022825665 @default.
- W2991491027 cites W2024824805 @default.
- W2991491027 cites W2026206466 @default.
- W2991491027 cites W2028968550 @default.
- W2991491027 cites W2038976806 @default.
- W2991491027 cites W2052222399 @default.
- W2991491027 cites W2053652417 @default.
- W2991491027 cites W2111972095 @default.
- W2991491027 cites W2115592362 @default.
- W2991491027 cites W2122915665 @default.
- W2991491027 cites W2153388322 @default.
- W2991491027 cites W2162314707 @default.
- W2991491027 cites W2165583710 @default.
- W2991491027 cites W2167574524 @default.
- W2991491027 cites W2314254785 @default.
- W2991491027 cites W2329475496 @default.
- W2991491027 cites W89563803 @default.
- W2991491027 doi "https://doi.org/10.4155/ebo.13.323" @default.
- W2991491027 hasPublicationYear "2013" @default.
- W2991491027 type Work @default.
- W2991491027 sameAs 2991491027 @default.
- W2991491027 citedByCount "2" @default.
- W2991491027 countsByYear W29914910272019 @default.
- W2991491027 countsByYear W29914910272021 @default.
- W2991491027 crossrefType "other" @default.
- W2991491027 hasAuthorship W2991491027A5020530713 @default.
- W2991491027 hasAuthorship W2991491027A5036718965 @default.
- W2991491027 hasConcept C102230213 @default.
- W2991491027 hasConcept C104317684 @default.
- W2991491027 hasConcept C122172344 @default.
- W2991491027 hasConcept C150903083 @default.
- W2991491027 hasConcept C21565614 @default.
- W2991491027 hasConcept C51456166 @default.
- W2991491027 hasConcept C54355233 @default.
- W2991491027 hasConcept C60644358 @default.
- W2991491027 hasConcept C86803240 @default.
- W2991491027 hasConceptScore W2991491027C102230213 @default.
- W2991491027 hasConceptScore W2991491027C104317684 @default.
- W2991491027 hasConceptScore W2991491027C122172344 @default.
- W2991491027 hasConceptScore W2991491027C150903083 @default.
- W2991491027 hasConceptScore W2991491027C21565614 @default.
- W2991491027 hasConceptScore W2991491027C51456166 @default.
- W2991491027 hasConceptScore W2991491027C54355233 @default.
- W2991491027 hasConceptScore W2991491027C60644358 @default.
- W2991491027 hasConceptScore W2991491027C86803240 @default.
- W2991491027 hasLocation W29914910271 @default.
- W2991491027 hasOpenAccess W2991491027 @default.
- W2991491027 hasPrimaryLocation W29914910271 @default.
- W2991491027 hasRelatedWork W2095976873 @default.
- W2991491027 hasRelatedWork W2133916024 @default.
- W2991491027 hasRelatedWork W2151777088 @default.
- W2991491027 hasRelatedWork W2173539074 @default.
- W2991491027 hasRelatedWork W2921084387 @default.
- W2991491027 hasRelatedWork W3116324250 @default.
- W2991491027 hasRelatedWork W4362242658 @default.
- W2991491027 hasRelatedWork W640027202 @default.
- W2991491027 hasRelatedWork W2181733901 @default.
- W2991491027 hasRelatedWork W2184937106 @default.
- W2991491027 isParatext "false" @default.
- W2991491027 isRetracted "false" @default.
- W2991491027 magId "2991491027" @default.
- W2991491027 workType "other" @default.