Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991506670> ?p ?o ?g. }
- W2991506670 abstract "Anomaly detection in videos aims at reporting anything that does not conform the normal behaviour or distribution. However, due to the sparsity of abnormal video clips in real life, collecting annotated data for supervised learning is exceptionally cumbersome. Inspired by the practicability of generative models for semi-supervised learning, we propose a novel sequential generative model based on variational autoencoder (VAE) for future frame prediction with convolutional LSTM (ConvLSTM). To the best of our knowledge, this is the first work that considers temporal information in future frame prediction based anomaly detection framework from the model perspective. Our experiments demonstrate that our approach is superior to the state-of-the-art methods on three benchmark datasets." @default.
- W2991506670 created "2019-12-05" @default.
- W2991506670 creator A5010194333 @default.
- W2991506670 creator A5019864227 @default.
- W2991506670 creator A5048762865 @default.
- W2991506670 creator A5070710782 @default.
- W2991506670 date "2019-09-01" @default.
- W2991506670 modified "2023-10-02" @default.
- W2991506670 title "Future Frame Prediction Using Convolutional VRNN for Anomaly Detection" @default.
- W2991506670 cites W1580389772 @default.
- W2991506670 cites W1595717062 @default.
- W2991506670 cites W2012931101 @default.
- W2991506670 cites W2021659075 @default.
- W2991506670 cites W2027123933 @default.
- W2991506670 cites W2041390734 @default.
- W2991506670 cites W2122361470 @default.
- W2991506670 cites W2124917681 @default.
- W2991506670 cites W2138092272 @default.
- W2991506670 cites W2161969291 @default.
- W2991506670 cites W2163612318 @default.
- W2991506670 cites W2337453828 @default.
- W2991506670 cites W2341058432 @default.
- W2991506670 cites W2519730330 @default.
- W2991506670 cites W2540481276 @default.
- W2991506670 cites W2777342313 @default.
- W2991506670 cites W2963061824 @default.
- W2991506670 cites W2963073614 @default.
- W2991506670 cites W2963291921 @default.
- W2991506670 cites W2963610939 @default.
- W2991506670 cites W764651262 @default.
- W2991506670 doi "https://doi.org/10.1109/avss.2019.8909850" @default.
- W2991506670 hasPublicationYear "2019" @default.
- W2991506670 type Work @default.
- W2991506670 sameAs 2991506670 @default.
- W2991506670 citedByCount "61" @default.
- W2991506670 countsByYear W29915066702020 @default.
- W2991506670 countsByYear W29915066702021 @default.
- W2991506670 countsByYear W29915066702022 @default.
- W2991506670 countsByYear W29915066702023 @default.
- W2991506670 crossrefType "proceedings-article" @default.
- W2991506670 hasAuthorship W2991506670A5010194333 @default.
- W2991506670 hasAuthorship W2991506670A5019864227 @default.
- W2991506670 hasAuthorship W2991506670A5048762865 @default.
- W2991506670 hasAuthorship W2991506670A5070710782 @default.
- W2991506670 hasBestOaLocation W29915066702 @default.
- W2991506670 hasConcept C101738243 @default.
- W2991506670 hasConcept C108583219 @default.
- W2991506670 hasConcept C119857082 @default.
- W2991506670 hasConcept C121332964 @default.
- W2991506670 hasConcept C126042441 @default.
- W2991506670 hasConcept C12997251 @default.
- W2991506670 hasConcept C13280743 @default.
- W2991506670 hasConcept C153180895 @default.
- W2991506670 hasConcept C154945302 @default.
- W2991506670 hasConcept C167966045 @default.
- W2991506670 hasConcept C185798385 @default.
- W2991506670 hasConcept C205649164 @default.
- W2991506670 hasConcept C26873012 @default.
- W2991506670 hasConcept C39890363 @default.
- W2991506670 hasConcept C41008148 @default.
- W2991506670 hasConcept C739882 @default.
- W2991506670 hasConcept C76155785 @default.
- W2991506670 hasConcept C81363708 @default.
- W2991506670 hasConceptScore W2991506670C101738243 @default.
- W2991506670 hasConceptScore W2991506670C108583219 @default.
- W2991506670 hasConceptScore W2991506670C119857082 @default.
- W2991506670 hasConceptScore W2991506670C121332964 @default.
- W2991506670 hasConceptScore W2991506670C126042441 @default.
- W2991506670 hasConceptScore W2991506670C12997251 @default.
- W2991506670 hasConceptScore W2991506670C13280743 @default.
- W2991506670 hasConceptScore W2991506670C153180895 @default.
- W2991506670 hasConceptScore W2991506670C154945302 @default.
- W2991506670 hasConceptScore W2991506670C167966045 @default.
- W2991506670 hasConceptScore W2991506670C185798385 @default.
- W2991506670 hasConceptScore W2991506670C205649164 @default.
- W2991506670 hasConceptScore W2991506670C26873012 @default.
- W2991506670 hasConceptScore W2991506670C39890363 @default.
- W2991506670 hasConceptScore W2991506670C41008148 @default.
- W2991506670 hasConceptScore W2991506670C739882 @default.
- W2991506670 hasConceptScore W2991506670C76155785 @default.
- W2991506670 hasConceptScore W2991506670C81363708 @default.
- W2991506670 hasLocation W29915066701 @default.
- W2991506670 hasLocation W29915066702 @default.
- W2991506670 hasOpenAccess W2991506670 @default.
- W2991506670 hasPrimaryLocation W29915066701 @default.
- W2991506670 hasRelatedWork W1901129140 @default.
- W2991506670 hasRelatedWork W2012931101 @default.
- W2991506670 hasRelatedWork W2122361470 @default.
- W2991506670 hasRelatedWork W2122646361 @default.
- W2991506670 hasRelatedWork W2138092272 @default.
- W2991506670 hasRelatedWork W2163612318 @default.
- W2991506670 hasRelatedWork W2341058432 @default.
- W2991506670 hasRelatedWork W2579718262 @default.
- W2991506670 hasRelatedWork W2753526808 @default.
- W2991506670 hasRelatedWork W2777342313 @default.
- W2991506670 hasRelatedWork W2925312408 @default.
- W2991506670 hasRelatedWork W2963061824 @default.
- W2991506670 hasRelatedWork W2963240734 @default.
- W2991506670 hasRelatedWork W2963610939 @default.
- W2991506670 hasRelatedWork W2963795951 @default.