Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991508748> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2991508748 endingPage "218" @default.
- W2991508748 startingPage "218" @default.
- W2991508748 abstract "Learning Vector Quantization (LVQ) is a supervised learning algorithm commonly used for statistical classification and pattern recognition. The competitive layer in LVQ studies the input vectors and classifies them into the correct classes. The amount of data involved in the learning process can be reduced by using data reduction methods. In this paper, we propose a data reduction method that uses geometrical proximity of the data. The basic idea is to drop sets of data that have many similarities and keep one representation for each set. By certain adjustments, the data reduction methods can decrease the amount of data involved in the learning process while still maintain the existing accuracy. The amount of data involved in the learning process can be reduced down to 33.22% for the abalone dataset and 55.02% for the bank marketing dataset, respectively." @default.
- W2991508748 created "2019-12-05" @default.
- W2991508748 creator A5051164799 @default.
- W2991508748 creator A5060924554 @default.
- W2991508748 date "2019-11-22" @default.
- W2991508748 modified "2023-09-25" @default.
- W2991508748 title "Improving learning vector quantization using data reduction" @default.
- W2991508748 cites W1482982321 @default.
- W2991508748 cites W1990075238 @default.
- W2991508748 cites W1996264924 @default.
- W2991508748 cites W2007733447 @default.
- W2991508748 cites W2078677975 @default.
- W2991508748 cites W2081075235 @default.
- W2991508748 cites W2129342935 @default.
- W2991508748 cites W2149408934 @default.
- W2991508748 cites W2402294061 @default.
- W2991508748 cites W2797688571 @default.
- W2991508748 doi "https://doi.org/10.26555/ijain.v5i3.330" @default.
- W2991508748 hasPublicationYear "2019" @default.
- W2991508748 type Work @default.
- W2991508748 sameAs 2991508748 @default.
- W2991508748 citedByCount "2" @default.
- W2991508748 countsByYear W29915087482020 @default.
- W2991508748 countsByYear W29915087482022 @default.
- W2991508748 crossrefType "journal-article" @default.
- W2991508748 hasAuthorship W2991508748A5051164799 @default.
- W2991508748 hasAuthorship W2991508748A5060924554 @default.
- W2991508748 hasBestOaLocation W29915087481 @default.
- W2991508748 hasConcept C111335779 @default.
- W2991508748 hasConcept C111919701 @default.
- W2991508748 hasConcept C11413529 @default.
- W2991508748 hasConcept C116409475 @default.
- W2991508748 hasConcept C119857082 @default.
- W2991508748 hasConcept C124101348 @default.
- W2991508748 hasConcept C136389625 @default.
- W2991508748 hasConcept C153180895 @default.
- W2991508748 hasConcept C153914771 @default.
- W2991508748 hasConcept C154945302 @default.
- W2991508748 hasConcept C199833920 @default.
- W2991508748 hasConcept C2524010 @default.
- W2991508748 hasConcept C28855332 @default.
- W2991508748 hasConcept C33923547 @default.
- W2991508748 hasConcept C40567965 @default.
- W2991508748 hasConcept C41008148 @default.
- W2991508748 hasConcept C50644808 @default.
- W2991508748 hasConcept C58489278 @default.
- W2991508748 hasConcept C58973888 @default.
- W2991508748 hasConcept C70518039 @default.
- W2991508748 hasConcept C98045186 @default.
- W2991508748 hasConceptScore W2991508748C111335779 @default.
- W2991508748 hasConceptScore W2991508748C111919701 @default.
- W2991508748 hasConceptScore W2991508748C11413529 @default.
- W2991508748 hasConceptScore W2991508748C116409475 @default.
- W2991508748 hasConceptScore W2991508748C119857082 @default.
- W2991508748 hasConceptScore W2991508748C124101348 @default.
- W2991508748 hasConceptScore W2991508748C136389625 @default.
- W2991508748 hasConceptScore W2991508748C153180895 @default.
- W2991508748 hasConceptScore W2991508748C153914771 @default.
- W2991508748 hasConceptScore W2991508748C154945302 @default.
- W2991508748 hasConceptScore W2991508748C199833920 @default.
- W2991508748 hasConceptScore W2991508748C2524010 @default.
- W2991508748 hasConceptScore W2991508748C28855332 @default.
- W2991508748 hasConceptScore W2991508748C33923547 @default.
- W2991508748 hasConceptScore W2991508748C40567965 @default.
- W2991508748 hasConceptScore W2991508748C41008148 @default.
- W2991508748 hasConceptScore W2991508748C50644808 @default.
- W2991508748 hasConceptScore W2991508748C58489278 @default.
- W2991508748 hasConceptScore W2991508748C58973888 @default.
- W2991508748 hasConceptScore W2991508748C70518039 @default.
- W2991508748 hasConceptScore W2991508748C98045186 @default.
- W2991508748 hasIssue "3" @default.
- W2991508748 hasLocation W29915087481 @default.
- W2991508748 hasLocation W29915087482 @default.
- W2991508748 hasOpenAccess W2991508748 @default.
- W2991508748 hasPrimaryLocation W29915087481 @default.
- W2991508748 hasRelatedWork W1762583017 @default.
- W2991508748 hasRelatedWork W2081000138 @default.
- W2991508748 hasRelatedWork W2168218041 @default.
- W2991508748 hasRelatedWork W2178566832 @default.
- W2991508748 hasRelatedWork W2376367779 @default.
- W2991508748 hasRelatedWork W2991508748 @default.
- W2991508748 hasRelatedWork W3049633467 @default.
- W2991508748 hasRelatedWork W3162567751 @default.
- W2991508748 hasRelatedWork W4285260836 @default.
- W2991508748 hasRelatedWork W4319309271 @default.
- W2991508748 hasVolume "5" @default.
- W2991508748 isParatext "false" @default.
- W2991508748 isRetracted "false" @default.
- W2991508748 magId "2991508748" @default.
- W2991508748 workType "article" @default.