Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991586031> ?p ?o ?g. }
- W2991586031 endingPage "106418" @default.
- W2991586031 startingPage "106418" @default.
- W2991586031 abstract "Gold mineralization in the Geita Hill deposit is associated with pyrite formed along microfracture networks and sulfidation fronts together with K-feldspar and biotite. The sulfidation fronts are best developed in magnetite-bearing ironstone. The gold is present mainly as electrum and gold tellurides along grain boundaries, and as inclusions in pyrite, quartz, biotite and K-feldspar. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of pyrite and magnetite grains reflect complex fluid-host rock interactions. Magnetite textures and chemistry change with alteration intensity, indicating the progression of the alteration front into the host rock. Pyrite textures are uniform across all rock types and reflect late-tectonic growth linked to multi-staged infiltration of hydrothermal fluids. Trace element distribution patterns in pyrite are locally complex and influenced by host rock chemistry. Gold distribution patterns in pyrite correlate closely with Te, Ag, Bi and Pb, indicating that gold occurs in micro- and nano-inclusions of telluride minerals. This is especially so for gold in quartz veins, whereas gold in ironstone and diorite also occurs as electrum with an average Au/Ag ratio of 0.41. As, Co and Ni in pyrite are lattice bound and occur in high concentrations in ironstone and diorite where they show characteristic growth zoning patterns. Pyrite in quartz veins has As, Co and Ni concentrations that are low and variable. Cr, Cu, Mo, Mn and Zn are present in all rock types in isolated inclusions in pyrite grains, whilst Pb, Bi and Sb occur in more dispersed patches of fine clustered inclusions. The Se content in pyrite is typical for Archean gold deposits, and reflects an average temperature of ~340 °C for the mineralizing fluid. The Co/Ni ratio of pyrite grains varies between 0 and 5.2 in ironstone and diorite, and most likely reflects the equilibration Co/Ni ratio of the host rock. The Co/Ni ratio of pyrite grains in quartz veins varies between 1 and 12, and is consistent with a magmatic-hydrothermal origin for the ore fluid. Trace element distribution patterns in magnetite and pyrite indicate that As, Ni, Co, Cr, Mn and Cu were mostly locally derived, and remobilised into the pyrite during sulfidation of the host rock. The concentrations of these elements are strongly lithologically controlled, and they are not consistently incorporated into the pyrite after initial stages of growth. Au, Ag, Te, Bi and Pb were externally derived, and closely correlate in all varieties of pyrite as well as strongly altered magnetite. The alteration footprint of the Geita Hill deposit is limited in extent, and does not involve As and Sb that are typically enriched in Archaean lode-gold systems. Instead, Te and Bi are most characteristic for the deposit and could be of use as path finder elements together with altered magnetite grains." @default.
- W2991586031 created "2019-12-05" @default.
- W2991586031 creator A5002056008 @default.
- W2991586031 creator A5037339637 @default.
- W2991586031 creator A5042585545 @default.
- W2991586031 creator A5075195854 @default.
- W2991586031 date "2020-02-01" @default.
- W2991586031 modified "2023-09-27" @default.
- W2991586031 title "Trace element associations in magnetite and hydrothermal pyrite from the Geita Hill gold deposit, Tanzania" @default.
- W2991586031 cites W1938264244 @default.
- W2991586031 cites W1965744338 @default.
- W2991586031 cites W1968868266 @default.
- W2991586031 cites W1969023317 @default.
- W2991586031 cites W1976984795 @default.
- W2991586031 cites W1980494566 @default.
- W2991586031 cites W1997393383 @default.
- W2991586031 cites W1998479105 @default.
- W2991586031 cites W2002033847 @default.
- W2991586031 cites W2003804462 @default.
- W2991586031 cites W2004656678 @default.
- W2991586031 cites W2018093298 @default.
- W2991586031 cites W2018366877 @default.
- W2991586031 cites W2018456659 @default.
- W2991586031 cites W2018557615 @default.
- W2991586031 cites W2019501187 @default.
- W2991586031 cites W2023577454 @default.
- W2991586031 cites W2025962880 @default.
- W2991586031 cites W2026575605 @default.
- W2991586031 cites W2030996811 @default.
- W2991586031 cites W2039228109 @default.
- W2991586031 cites W2041142686 @default.
- W2991586031 cites W2041398136 @default.
- W2991586031 cites W2042173627 @default.
- W2991586031 cites W2043710603 @default.
- W2991586031 cites W2047673727 @default.
- W2991586031 cites W2050544236 @default.
- W2991586031 cites W2051227629 @default.
- W2991586031 cites W2051323905 @default.
- W2991586031 cites W2059774297 @default.
- W2991586031 cites W2061590669 @default.
- W2991586031 cites W2063011715 @default.
- W2991586031 cites W2064295439 @default.
- W2991586031 cites W2065695070 @default.
- W2991586031 cites W2070438077 @default.
- W2991586031 cites W2072062807 @default.
- W2991586031 cites W2078703472 @default.
- W2991586031 cites W2084254634 @default.
- W2991586031 cites W2085064498 @default.
- W2991586031 cites W2087182280 @default.
- W2991586031 cites W2088096040 @default.
- W2991586031 cites W2096970223 @default.
- W2991586031 cites W2105963017 @default.
- W2991586031 cites W2125283660 @default.
- W2991586031 cites W2130626244 @default.
- W2991586031 cites W2153000470 @default.
- W2991586031 cites W2153952174 @default.
- W2991586031 cites W2154295153 @default.
- W2991586031 cites W2154506653 @default.
- W2991586031 cites W2189665814 @default.
- W2991586031 cites W2204420307 @default.
- W2991586031 cites W2305204011 @default.
- W2991586031 cites W2314503413 @default.
- W2991586031 cites W2329979335 @default.
- W2991586031 cites W2331361364 @default.
- W2991586031 cites W2340517067 @default.
- W2991586031 cites W2397669776 @default.
- W2991586031 cites W2585140187 @default.
- W2991586031 cites W2604866346 @default.
- W2991586031 cites W2743224746 @default.
- W2991586031 cites W2751558889 @default.
- W2991586031 cites W2771483204 @default.
- W2991586031 cites W2776185416 @default.
- W2991586031 cites W2793795969 @default.
- W2991586031 cites W2800361777 @default.
- W2991586031 cites W2805446132 @default.
- W2991586031 cites W2890974112 @default.
- W2991586031 cites W2903340996 @default.
- W2991586031 cites W2951833327 @default.
- W2991586031 cites W4238080741 @default.
- W2991586031 doi "https://doi.org/10.1016/j.gexplo.2019.106418" @default.
- W2991586031 hasPublicationYear "2020" @default.
- W2991586031 type Work @default.
- W2991586031 sameAs 2991586031 @default.
- W2991586031 citedByCount "2" @default.
- W2991586031 countsByYear W29915860312022 @default.
- W2991586031 countsByYear W29915860312023 @default.
- W2991586031 crossrefType "journal-article" @default.
- W2991586031 hasAuthorship W2991586031A5002056008 @default.
- W2991586031 hasAuthorship W2991586031A5037339637 @default.
- W2991586031 hasAuthorship W2991586031A5042585545 @default.
- W2991586031 hasAuthorship W2991586031A5075195854 @default.
- W2991586031 hasConcept C127313418 @default.
- W2991586031 hasConcept C143329565 @default.
- W2991586031 hasConcept C151730666 @default.
- W2991586031 hasConcept C156622251 @default.
- W2991586031 hasConcept C165205528 @default.
- W2991586031 hasConcept C17409809 @default.
- W2991586031 hasConcept C199289684 @default.