Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991596977> ?p ?o ?g. }
- W2991596977 endingPage "4557" @default.
- W2991596977 startingPage "4557" @default.
- W2991596977 abstract "The intraday electricity markets are continuous trade platforms for each hour of the day and have specific characteristics. These markets have shown an increasing number of transactions due to the requirement of close to delivery electricity trade. Recently, intraday electricity price market research has seen a rapid increase in a number of works for price prediction. However, most of these works focus on the features and descriptive statistics of the intraday electricity markets and overlook the comparison of different available models. In this paper, we compare a variety of methods including neural networks to predict intraday electricity market prices in Turkish intraday market. The recurrent neural networks methods outperform the classical methods. Furthermore, gated recurrent unit network architecture achieves the best results with a mean absolute error of 0.978 and a root mean square error of 1.302. Moreover, our results indicate that day-ahead market price of the corresponding hour is a key feature for intraday price forecasting and estimating spread values with day-ahead prices proves to be a more efficient method for prediction." @default.
- W2991596977 created "2019-12-05" @default.
- W2991596977 creator A5065311854 @default.
- W2991596977 creator A5080738214 @default.
- W2991596977 date "2019-11-29" @default.
- W2991596977 modified "2023-10-05" @default.
- W2991596977 title "Neural Network Based Model Comparison for Intraday Electricity Price Forecasting" @default.
- W2991596977 cites W1702373886 @default.
- W2991596977 cites W1779574132 @default.
- W2991596977 cites W2003608156 @default.
- W2991596977 cites W2010538021 @default.
- W2991596977 cites W2012595795 @default.
- W2991596977 cites W2020078097 @default.
- W2991596977 cites W2040503026 @default.
- W2991596977 cites W2049986915 @default.
- W2991596977 cites W2064675550 @default.
- W2991596977 cites W2070291412 @default.
- W2991596977 cites W2080005910 @default.
- W2991596977 cites W2083938841 @default.
- W2991596977 cites W2089217930 @default.
- W2991596977 cites W2090457102 @default.
- W2991596977 cites W2108394222 @default.
- W2991596977 cites W2122671960 @default.
- W2991596977 cites W2126831543 @default.
- W2991596977 cites W2135046866 @default.
- W2991596977 cites W2150722745 @default.
- W2991596977 cites W2272544568 @default.
- W2991596977 cites W2517580759 @default.
- W2991596977 cites W2570991997 @default.
- W2991596977 cites W2595826589 @default.
- W2991596977 cites W2625224297 @default.
- W2991596977 cites W2735869980 @default.
- W2991596977 cites W2752218460 @default.
- W2991596977 cites W2766228243 @default.
- W2991596977 cites W2783167310 @default.
- W2991596977 cites W2793017755 @default.
- W2991596977 cites W2799827709 @default.
- W2991596977 cites W2801761896 @default.
- W2991596977 cites W2802410020 @default.
- W2991596977 cites W2889332951 @default.
- W2991596977 cites W2896064754 @default.
- W2991596977 cites W2900946119 @default.
- W2991596977 cites W2913037080 @default.
- W2991596977 cites W2913712311 @default.
- W2991596977 cites W2921860615 @default.
- W2991596977 cites W2970470316 @default.
- W2991596977 cites W2975391820 @default.
- W2991596977 cites W307111212 @default.
- W2991596977 cites W3123210734 @default.
- W2991596977 cites W3123593991 @default.
- W2991596977 cites W3124756414 @default.
- W2991596977 cites W3125461397 @default.
- W2991596977 doi "https://doi.org/10.3390/en12234557" @default.
- W2991596977 hasPublicationYear "2019" @default.
- W2991596977 type Work @default.
- W2991596977 sameAs 2991596977 @default.
- W2991596977 citedByCount "32" @default.
- W2991596977 countsByYear W29915969772020 @default.
- W2991596977 countsByYear W29915969772021 @default.
- W2991596977 countsByYear W29915969772022 @default.
- W2991596977 countsByYear W29915969772023 @default.
- W2991596977 crossrefType "journal-article" @default.
- W2991596977 hasAuthorship W2991596977A5065311854 @default.
- W2991596977 hasAuthorship W2991596977A5080738214 @default.
- W2991596977 hasBestOaLocation W29915969771 @default.
- W2991596977 hasConcept C105795698 @default.
- W2991596977 hasConcept C108583219 @default.
- W2991596977 hasConcept C119599485 @default.
- W2991596977 hasConcept C127413603 @default.
- W2991596977 hasConcept C139945424 @default.
- W2991596977 hasConcept C146733006 @default.
- W2991596977 hasConcept C149782125 @default.
- W2991596977 hasConcept C150217764 @default.
- W2991596977 hasConcept C154945302 @default.
- W2991596977 hasConcept C162324750 @default.
- W2991596977 hasConcept C206658404 @default.
- W2991596977 hasConcept C2778827112 @default.
- W2991596977 hasConcept C2781104810 @default.
- W2991596977 hasConcept C33923547 @default.
- W2991596977 hasConcept C41008148 @default.
- W2991596977 hasConcept C50644808 @default.
- W2991596977 hasConceptScore W2991596977C105795698 @default.
- W2991596977 hasConceptScore W2991596977C108583219 @default.
- W2991596977 hasConceptScore W2991596977C119599485 @default.
- W2991596977 hasConceptScore W2991596977C127413603 @default.
- W2991596977 hasConceptScore W2991596977C139945424 @default.
- W2991596977 hasConceptScore W2991596977C146733006 @default.
- W2991596977 hasConceptScore W2991596977C149782125 @default.
- W2991596977 hasConceptScore W2991596977C150217764 @default.
- W2991596977 hasConceptScore W2991596977C154945302 @default.
- W2991596977 hasConceptScore W2991596977C162324750 @default.
- W2991596977 hasConceptScore W2991596977C206658404 @default.
- W2991596977 hasConceptScore W2991596977C2778827112 @default.
- W2991596977 hasConceptScore W2991596977C2781104810 @default.
- W2991596977 hasConceptScore W2991596977C33923547 @default.
- W2991596977 hasConceptScore W2991596977C41008148 @default.
- W2991596977 hasConceptScore W2991596977C50644808 @default.
- W2991596977 hasFunder F4320334627 @default.