Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991610913> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2991610913 abstract "Despite effective medications, rates of uncontrolled glucose levels in type 2 diabetes remain high. We aimed to test the utility of machine learning applied to big data in identifying the potential role of concomitant drugs not taken for diabetes which may contribute to lowering blood glucose. Success in controlling blood glucose was defined as achieving HgA1c levels < 6.5% after 90-365 days following diagnosis and initiating treatment. Among numerous concomitant drugs taken by type 2 diabetic patients, alpha 1 (α1)-adrenoceptor antagonist drugs were the only group of medications that significantly improved the success rate of glucose control. Searching the published literature, this effect of α1-adrenoceptor antagonists has been shown in animal models, where this class of medications appears to induce insulin secretion. In conclusion, machine learning of big data is a novel method to identify effective antidiabetic effects for potential repurposable medications already on the market for other indications. Because these α1-adrenoceptor antagonists are widely used in men for treating benign prostate hyperplasia (BPH) at age groups exhibiting increased rates of type 2 diabetes, this finding is of potential clinical significance." @default.
- W2991610913 created "2019-12-05" @default.
- W2991610913 creator A5026206882 @default.
- W2991610913 creator A5029708595 @default.
- W2991610913 creator A5067844462 @default.
- W2991610913 creator A5068244845 @default.
- W2991610913 date "2019-11-20" @default.
- W2991610913 modified "2023-09-26" @default.
- W2991610913 title "Identification of repurposable drugs with beneficial effects on glucose control in type 2 diabetes using machine learning" @default.
- W2991610913 cites W134680794 @default.
- W2991610913 cites W1510717911 @default.
- W2991610913 cites W1879478146 @default.
- W2991610913 cites W1978839916 @default.
- W2991610913 cites W2088800404 @default.
- W2991610913 cites W2121212592 @default.
- W2991610913 cites W2126683099 @default.
- W2991610913 cites W2139374139 @default.
- W2991610913 cites W2140937253 @default.
- W2991610913 cites W2150291618 @default.
- W2991610913 cites W2151412408 @default.
- W2991610913 cites W2155085317 @default.
- W2991610913 cites W2278964150 @default.
- W2991610913 cites W2298306801 @default.
- W2991610913 cites W2430205263 @default.
- W2991610913 cites W2581920297 @default.
- W2991610913 cites W2607259414 @default.
- W2991610913 cites W2799923309 @default.
- W2991610913 cites W2901824973 @default.
- W2991610913 cites W3102476541 @default.
- W2991610913 cites W4236362309 @default.
- W2991610913 cites W435782705 @default.
- W2991610913 doi "https://doi.org/10.1002/prp2.529" @default.
- W2991610913 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6864406" @default.
- W2991610913 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31763043" @default.
- W2991610913 hasPublicationYear "2019" @default.
- W2991610913 type Work @default.
- W2991610913 sameAs 2991610913 @default.
- W2991610913 citedByCount "6" @default.
- W2991610913 countsByYear W29916109132020 @default.
- W2991610913 countsByYear W29916109132021 @default.
- W2991610913 countsByYear W29916109132022 @default.
- W2991610913 countsByYear W29916109132023 @default.
- W2991610913 crossrefType "journal-article" @default.
- W2991610913 hasAuthorship W2991610913A5026206882 @default.
- W2991610913 hasAuthorship W2991610913A5029708595 @default.
- W2991610913 hasAuthorship W2991610913A5067844462 @default.
- W2991610913 hasAuthorship W2991610913A5068244845 @default.
- W2991610913 hasBestOaLocation W29916109131 @default.
- W2991610913 hasConcept C126322002 @default.
- W2991610913 hasConcept C134018914 @default.
- W2991610913 hasConcept C2777180221 @default.
- W2991610913 hasConcept C2779306644 @default.
- W2991610913 hasConcept C2779384505 @default.
- W2991610913 hasConcept C555293320 @default.
- W2991610913 hasConcept C71924100 @default.
- W2991610913 hasConcept C98274493 @default.
- W2991610913 hasConceptScore W2991610913C126322002 @default.
- W2991610913 hasConceptScore W2991610913C134018914 @default.
- W2991610913 hasConceptScore W2991610913C2777180221 @default.
- W2991610913 hasConceptScore W2991610913C2779306644 @default.
- W2991610913 hasConceptScore W2991610913C2779384505 @default.
- W2991610913 hasConceptScore W2991610913C555293320 @default.
- W2991610913 hasConceptScore W2991610913C71924100 @default.
- W2991610913 hasConceptScore W2991610913C98274493 @default.
- W2991610913 hasIssue "6" @default.
- W2991610913 hasLocation W29916109131 @default.
- W2991610913 hasLocation W29916109132 @default.
- W2991610913 hasLocation W29916109133 @default.
- W2991610913 hasLocation W29916109134 @default.
- W2991610913 hasOpenAccess W2991610913 @default.
- W2991610913 hasPrimaryLocation W29916109131 @default.
- W2991610913 hasRelatedWork W1563850031 @default.
- W2991610913 hasRelatedWork W1984309643 @default.
- W2991610913 hasRelatedWork W2106653639 @default.
- W2991610913 hasRelatedWork W2124070488 @default.
- W2991610913 hasRelatedWork W2219852335 @default.
- W2991610913 hasRelatedWork W2233866314 @default.
- W2991610913 hasRelatedWork W2415759662 @default.
- W2991610913 hasRelatedWork W2470410461 @default.
- W2991610913 hasRelatedWork W3036934084 @default.
- W2991610913 hasRelatedWork W4221070417 @default.
- W2991610913 hasVolume "7" @default.
- W2991610913 isParatext "false" @default.
- W2991610913 isRetracted "false" @default.
- W2991610913 magId "2991610913" @default.
- W2991610913 workType "article" @default.