Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991616716> ?p ?o ?g. }
- W2991616716 endingPage "317" @default.
- W2991616716 startingPage "279" @default.
- W2991616716 abstract "Advances in computing technology have fostered the development of new and powerful deep learning (DL) techniques, which have demonstrated promising results in a wide range of applications. Particularly, DL methods have been successfully used to classify remotely sensed data collected by Earth Observation (EO) instruments. Hyperspectral imaging (HSI) is a hot topic in remote sensing data analysis due to the vast amount of information comprised by this kind of images, which allows for a better characterization and exploitation of the Earth surface by combining rich spectral and spatial information. However, HSI poses major challenges for supervised classification methods due to the high dimensionality of the data and the limited availability of training samples. These issues, together with the high intraclass variability (and interclass similarity) –often present in HSI data– may hamper the effectiveness of classifiers. In order to solve these limitations, several DL-based architectures have been recently developed, exhibiting great potential in HSI data interpretation. This paper provides a comprehensive review of the current-state-of-the-art in DL for HSI classification, analyzing the strengths and weaknesses of the most widely used classifiers in the literature. For each discussed method, we provide quantitative results using several well-known and widely used HSI scenes, thus providing an exhaustive comparison of the discussed techniques. The paper concludes with some remarks and hints about future challenges in the application of DL techniques to HSI classification. The source codes of the methods discussed in this paper are available from: https://github.com/mhaut/hyperspectral_deeplearning_review." @default.
- W2991616716 created "2019-12-05" @default.
- W2991616716 creator A5010624980 @default.
- W2991616716 creator A5039673511 @default.
- W2991616716 creator A5046123228 @default.
- W2991616716 creator A5054292278 @default.
- W2991616716 date "2019-12-01" @default.
- W2991616716 modified "2023-10-11" @default.
- W2991616716 title "Deep learning classifiers for hyperspectral imaging: A review" @default.
- W2991616716 cites W1491705651 @default.
- W2991616716 cites W1521436688 @default.
- W2991616716 cites W1524140179 @default.
- W2991616716 cites W1570637396 @default.
- W2991616716 cites W1576462183 @default.
- W2991616716 cites W1772504446 @default.
- W2991616716 cites W1843514792 @default.
- W2991616716 cites W1903029394 @default.
- W2991616716 cites W1950365613 @default.
- W2991616716 cites W1963659868 @default.
- W2991616716 cites W1964155876 @default.
- W2991616716 cites W1965309615 @default.
- W2991616716 cites W1967810897 @default.
- W2991616716 cites W1970099214 @default.
- W2991616716 cites W1970746706 @default.
- W2991616716 cites W1974981350 @default.
- W2991616716 cites W1976779727 @default.
- W2991616716 cites W1979730959 @default.
- W2991616716 cites W1985996976 @default.
- W2991616716 cites W1988115241 @default.
- W2991616716 cites W1988903449 @default.
- W2991616716 cites W1990895816 @default.
- W2991616716 cites W1992102478 @default.
- W2991616716 cites W1994040806 @default.
- W2991616716 cites W2001298023 @default.
- W2991616716 cites W2006280268 @default.
- W2991616716 cites W2008847349 @default.
- W2991616716 cites W2010797000 @default.
- W2991616716 cites W2012797058 @default.
- W2991616716 cites W2015415108 @default.
- W2991616716 cites W2015502627 @default.
- W2991616716 cites W2016589492 @default.
- W2991616716 cites W2018257962 @default.
- W2991616716 cites W2018732570 @default.
- W2991616716 cites W2018825256 @default.
- W2991616716 cites W2019338222 @default.
- W2991616716 cites W2019899368 @default.
- W2991616716 cites W2020078511 @default.
- W2991616716 cites W2021455849 @default.
- W2991616716 cites W2022470997 @default.
- W2991616716 cites W2029316659 @default.
- W2991616716 cites W2038745668 @default.
- W2991616716 cites W2040738344 @default.
- W2991616716 cites W2041227601 @default.
- W2991616716 cites W2041372541 @default.
- W2991616716 cites W2043665634 @default.
- W2991616716 cites W2044893557 @default.
- W2991616716 cites W2048056200 @default.
- W2991616716 cites W2051353899 @default.
- W2991616716 cites W2054973482 @default.
- W2991616716 cites W2057196195 @default.
- W2991616716 cites W2059056443 @default.
- W2991616716 cites W2059390551 @default.
- W2991616716 cites W2059976262 @default.
- W2991616716 cites W2061443113 @default.
- W2991616716 cites W2063102607 @default.
- W2991616716 cites W2064675550 @default.
- W2991616716 cites W2064690970 @default.
- W2991616716 cites W2066916495 @default.
- W2991616716 cites W2069231830 @default.
- W2991616716 cites W2076063813 @default.
- W2991616716 cites W2076777984 @default.
- W2991616716 cites W2078626246 @default.
- W2991616716 cites W2082627840 @default.
- W2991616716 cites W2083933193 @default.
- W2991616716 cites W2085727703 @default.
- W2991616716 cites W2087263574 @default.
- W2991616716 cites W2089468765 @default.
- W2991616716 cites W2090424610 @default.
- W2991616716 cites W2092155521 @default.
- W2991616716 cites W2095190520 @default.
- W2991616716 cites W2095687521 @default.
- W2991616716 cites W2096352448 @default.
- W2991616716 cites W2098057602 @default.
- W2991616716 cites W2100056645 @default.
- W2991616716 cites W2100495367 @default.
- W2991616716 cites W2101711129 @default.
- W2991616716 cites W2103304742 @default.
- W2991616716 cites W2103496339 @default.
- W2991616716 cites W2103734061 @default.
- W2991616716 cites W2105386417 @default.
- W2991616716 cites W2106283878 @default.
- W2991616716 cites W2112796928 @default.
- W2991616716 cites W2114367267 @default.
- W2991616716 cites W2115305054 @default.
- W2991616716 cites W2116955146 @default.
- W2991616716 cites W2125188192 @default.
- W2991616716 cites W2125240520 @default.
- W2991616716 cites W2126943704 @default.