Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991648504> ?p ?o ?g. }
- W2991648504 endingPage "1262" @default.
- W2991648504 startingPage "1250" @default.
- W2991648504 abstract "Abstract The current paper introduces a new multilayer perceptron (MLP) and support vector machine (SVM) based approach to improve daily rainfall estimation from the Meteosat Second Generation (MSG) data. In this study, the precipitation is first detected and classified into convective and stratiform rain by two MLP models, and then four multi-class SVM algorithms were used for daily rainfall estimation. Relevant spectral and textural input features of the developed algorithms were derived from the spectral MSG SEVIRI radiometer channels. The models were trained using radar rainfall data set colected over north Algeria. Validation of the proposed daily rainfall estimation technique was performed by rain gauge network data set recorded over north Algeria. Thus, several statistical scores were calculated, such as correlation coefficient (r), root mean square error (RMSE), mean error (Bias), and mean absolute error (MAE). The findings given by: (r = 0.97, bias = 0.31 mm, RMSE = 2.20 mm and MAE = 1.07 mm), showed a quite satisfactory relationship between the estimation and the respective observed daily precipitation. Moreover, the comparison of the results with those of two advanced techniques based on random forests (RF) and weighted ‘k’ nearest neighbor (WkNN) showed higher accuracy obtained by the proposed model." @default.
- W2991648504 created "2019-12-05" @default.
- W2991648504 creator A5002001302 @default.
- W2991648504 creator A5075355234 @default.
- W2991648504 date "2020-02-01" @default.
- W2991648504 modified "2023-09-30" @default.
- W2991648504 title "A multilayer perceptron and multiclass support vector machine based high accuracy technique for daily rainfall estimation from MSG SEVIRI data" @default.
- W2991648504 cites W1498436455 @default.
- W2991648504 cites W1618463439 @default.
- W2991648504 cites W1854912902 @default.
- W2991648504 cites W1970928041 @default.
- W2991648504 cites W1971286314 @default.
- W2991648504 cites W1980986928 @default.
- W2991648504 cites W1982745943 @default.
- W2991648504 cites W1985817801 @default.
- W2991648504 cites W1986229658 @default.
- W2991648504 cites W1989664010 @default.
- W2991648504 cites W1998821638 @default.
- W2991648504 cites W1999047739 @default.
- W2991648504 cites W2002869399 @default.
- W2991648504 cites W2013689051 @default.
- W2991648504 cites W2027831657 @default.
- W2991648504 cites W2029291795 @default.
- W2991648504 cites W2040208504 @default.
- W2991648504 cites W2041965758 @default.
- W2991648504 cites W2042711916 @default.
- W2991648504 cites W2055308682 @default.
- W2991648504 cites W2059432853 @default.
- W2991648504 cites W2067304170 @default.
- W2991648504 cites W2069229431 @default.
- W2991648504 cites W2072655584 @default.
- W2991648504 cites W2076358148 @default.
- W2991648504 cites W2076656703 @default.
- W2991648504 cites W2077421215 @default.
- W2991648504 cites W2077992157 @default.
- W2991648504 cites W2078619499 @default.
- W2991648504 cites W2080441940 @default.
- W2991648504 cites W2081232330 @default.
- W2991648504 cites W2082819436 @default.
- W2991648504 cites W2087070363 @default.
- W2991648504 cites W2091537271 @default.
- W2991648504 cites W2101394945 @default.
- W2991648504 cites W2102731100 @default.
- W2991648504 cites W2105374595 @default.
- W2991648504 cites W2119803205 @default.
- W2991648504 cites W2120730822 @default.
- W2991648504 cites W2129312137 @default.
- W2991648504 cites W2138644576 @default.
- W2991648504 cites W2139617495 @default.
- W2991648504 cites W2141153426 @default.
- W2991648504 cites W2141997044 @default.
- W2991648504 cites W2150798600 @default.
- W2991648504 cites W2154432116 @default.
- W2991648504 cites W2158830316 @default.
- W2991648504 cites W2172000360 @default.
- W2991648504 cites W2174451383 @default.
- W2991648504 cites W2249993009 @default.
- W2991648504 cites W2308655584 @default.
- W2991648504 cites W2340938351 @default.
- W2991648504 cites W2441344980 @default.
- W2991648504 cites W2470898428 @default.
- W2991648504 cites W2479571837 @default.
- W2991648504 cites W2503189618 @default.
- W2991648504 cites W2560268323 @default.
- W2991648504 cites W2779834058 @default.
- W2991648504 cites W2805001781 @default.
- W2991648504 cites W2903493827 @default.
- W2991648504 cites W2906208963 @default.
- W2991648504 cites W3126708211 @default.
- W2991648504 doi "https://doi.org/10.1016/j.asr.2019.11.018" @default.
- W2991648504 hasPublicationYear "2020" @default.
- W2991648504 type Work @default.
- W2991648504 sameAs 2991648504 @default.
- W2991648504 citedByCount "9" @default.
- W2991648504 countsByYear W29916485042020 @default.
- W2991648504 countsByYear W29916485042021 @default.
- W2991648504 countsByYear W29916485042022 @default.
- W2991648504 countsByYear W29916485042023 @default.
- W2991648504 crossrefType "journal-article" @default.
- W2991648504 hasAuthorship W2991648504A5002001302 @default.
- W2991648504 hasAuthorship W2991648504A5075355234 @default.
- W2991648504 hasConcept C119857082 @default.
- W2991648504 hasConcept C12267149 @default.
- W2991648504 hasConcept C127313418 @default.
- W2991648504 hasConcept C127413603 @default.
- W2991648504 hasConcept C153180895 @default.
- W2991648504 hasConcept C154945302 @default.
- W2991648504 hasConcept C179717631 @default.
- W2991648504 hasConcept C201995342 @default.
- W2991648504 hasConcept C41008148 @default.
- W2991648504 hasConcept C50644808 @default.
- W2991648504 hasConcept C60908668 @default.
- W2991648504 hasConcept C62649853 @default.
- W2991648504 hasConcept C96250715 @default.
- W2991648504 hasConceptScore W2991648504C119857082 @default.
- W2991648504 hasConceptScore W2991648504C12267149 @default.
- W2991648504 hasConceptScore W2991648504C127313418 @default.
- W2991648504 hasConceptScore W2991648504C127413603 @default.