Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991934524> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2991934524 endingPage "101789" @default.
- W2991934524 startingPage "101789" @default.
- W2991934524 abstract "Abstract Automatic classification of breast histopathology images plays a key role in computer-aided breast cancer diagnosis. However, feature-based classification methods rely on the accurate cell segmentation and feature extraction. Due to overlapping cells, dust, impurities and uneven irradiation the accurate segmentation and efficient feature extraction are still challenging. In order to overcome the above difficulties and limited breast histopathology images, in this paper, a hybrid structure which includes a double deep transfer learning (D2TL) and interactive cross-task extreme learning machine (ICELM) is proposed based on feature extraction and representation ability of CNN and classification robustness of ELM. First, high level features are extracted using deep transfer learning and double-step deep transfer learning. Then, the high level feature sets are jointly used as regularization terms to further improve classification performance in interactive cross task extreme learning machine. The proposed method was tested on 134 breast cancer histopathology images. Results show that our method has achieved remarkable performance in classification accuracy (96.67%, 96.96%, 98.18%). From the experiment result, the proposed method is promising for providing an efficient tool for breast cancer classification in clinical settings." @default.
- W2991934524 created "2019-12-13" @default.
- W2991934524 creator A5000802996 @default.
- W2991934524 creator A5036949743 @default.
- W2991934524 creator A5044924773 @default.
- W2991934524 creator A5056534182 @default.
- W2991934524 creator A5067652312 @default.
- W2991934524 creator A5078752570 @default.
- W2991934524 creator A5090268937 @default.
- W2991934524 date "2020-03-01" @default.
- W2991934524 modified "2023-10-17" @default.
- W2991934524 title "Cross-task extreme learning machine for breast cancer image classification with deep convolutional features" @default.
- W2991934524 cites W1982354590 @default.
- W2991934524 cites W2009379587 @default.
- W2991934524 cites W2026131661 @default.
- W2991934524 cites W2059477850 @default.
- W2991934524 cites W2077174186 @default.
- W2991934524 cites W2108598243 @default.
- W2991934524 cites W2111072639 @default.
- W2991934524 cites W2165698076 @default.
- W2991934524 cites W2175543269 @default.
- W2991934524 cites W2178957972 @default.
- W2991934524 cites W2253429366 @default.
- W2991934524 cites W2287927567 @default.
- W2991934524 cites W2324080174 @default.
- W2991934524 cites W2344480160 @default.
- W2991934524 cites W2418033038 @default.
- W2991934524 cites W2462215821 @default.
- W2991934524 cites W2586833865 @default.
- W2991934524 cites W2604795174 @default.
- W2991934524 cites W2716665989 @default.
- W2991934524 cites W3098150009 @default.
- W2991934524 cites W36055984 @default.
- W2991934524 doi "https://doi.org/10.1016/j.bspc.2019.101789" @default.
- W2991934524 hasPublicationYear "2020" @default.
- W2991934524 type Work @default.
- W2991934524 sameAs 2991934524 @default.
- W2991934524 citedByCount "31" @default.
- W2991934524 countsByYear W29919345242020 @default.
- W2991934524 countsByYear W29919345242021 @default.
- W2991934524 countsByYear W29919345242022 @default.
- W2991934524 countsByYear W29919345242023 @default.
- W2991934524 crossrefType "journal-article" @default.
- W2991934524 hasAuthorship W2991934524A5000802996 @default.
- W2991934524 hasAuthorship W2991934524A5036949743 @default.
- W2991934524 hasAuthorship W2991934524A5044924773 @default.
- W2991934524 hasAuthorship W2991934524A5056534182 @default.
- W2991934524 hasAuthorship W2991934524A5067652312 @default.
- W2991934524 hasAuthorship W2991934524A5078752570 @default.
- W2991934524 hasAuthorship W2991934524A5090268937 @default.
- W2991934524 hasConcept C108583219 @default.
- W2991934524 hasConcept C115961682 @default.
- W2991934524 hasConcept C119857082 @default.
- W2991934524 hasConcept C153180895 @default.
- W2991934524 hasConcept C154945302 @default.
- W2991934524 hasConcept C162324750 @default.
- W2991934524 hasConcept C187736073 @default.
- W2991934524 hasConcept C2780150128 @default.
- W2991934524 hasConcept C2780451532 @default.
- W2991934524 hasConcept C41008148 @default.
- W2991934524 hasConcept C50644808 @default.
- W2991934524 hasConcept C75294576 @default.
- W2991934524 hasConcept C81363708 @default.
- W2991934524 hasConceptScore W2991934524C108583219 @default.
- W2991934524 hasConceptScore W2991934524C115961682 @default.
- W2991934524 hasConceptScore W2991934524C119857082 @default.
- W2991934524 hasConceptScore W2991934524C153180895 @default.
- W2991934524 hasConceptScore W2991934524C154945302 @default.
- W2991934524 hasConceptScore W2991934524C162324750 @default.
- W2991934524 hasConceptScore W2991934524C187736073 @default.
- W2991934524 hasConceptScore W2991934524C2780150128 @default.
- W2991934524 hasConceptScore W2991934524C2780451532 @default.
- W2991934524 hasConceptScore W2991934524C41008148 @default.
- W2991934524 hasConceptScore W2991934524C50644808 @default.
- W2991934524 hasConceptScore W2991934524C75294576 @default.
- W2991934524 hasConceptScore W2991934524C81363708 @default.
- W2991934524 hasFunder F4320321001 @default.
- W2991934524 hasFunder F4320326873 @default.
- W2991934524 hasFunder F4320335787 @default.
- W2991934524 hasLocation W29919345241 @default.
- W2991934524 hasOpenAccess W2991934524 @default.
- W2991934524 hasPrimaryLocation W29919345241 @default.
- W2991934524 hasRelatedWork W1525510058 @default.
- W2991934524 hasRelatedWork W2732542196 @default.
- W2991934524 hasRelatedWork W2738221750 @default.
- W2991934524 hasRelatedWork W2766604260 @default.
- W2991934524 hasRelatedWork W2799614062 @default.
- W2991934524 hasRelatedWork W3021430260 @default.
- W2991934524 hasRelatedWork W3156786002 @default.
- W2991934524 hasRelatedWork W3189091156 @default.
- W2991934524 hasRelatedWork W4311257506 @default.
- W2991934524 hasRelatedWork W564581980 @default.
- W2991934524 hasVolume "57" @default.
- W2991934524 isParatext "false" @default.
- W2991934524 isRetracted "false" @default.
- W2991934524 magId "2991934524" @default.
- W2991934524 workType "article" @default.