Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991935909> ?p ?o ?g. }
- W2991935909 endingPage "5334" @default.
- W2991935909 startingPage "5334" @default.
- W2991935909 abstract "Financial market prediction attracts immense interest among researchers nowadays due to rapid increase in the investments of financial markets in the last few decades. The stock market is one of the leading financial markets due to importance and interest of many stakeholders. With the development of machine learning techniques, the financial industry thrived with the enhancement of the forecasting ability. Probabilistic neural network (PNN) is a promising machine learning technique which can be used to forecast financial markets with a higher accuracy. A major limitation of PNN is the assumption of Gaussian distribution as the distribution of input variables which is violated with respect to financial data. The main objective of this study is to improve the standard PNN by incorporating a proper multivariate distribution as the joint distribution of input variables and addressing the multi-class imbalanced problem persisting in the directional prediction of the stock market. This model building process is illustrated and tested with daily close prices of three stock market indices: AORD, GSPC and ASPI and related financial market indices. Results proved that scaled t distribution with location, scale and shape parameters can be used as more suitable distribution for financial return series. Global optimization methods are more appropriate to estimate better parameters of multivariate distributions. The global optimization technique used in this study is capable of estimating parameters with considerably high dimensional multivariate distributions. The proposed PNN model, which considers multivariate scaled t distribution as the joint distribution of input variables, exhibits better performance than the standard PNN model. The ensemble technique: multi-class undersampling based bagging (MCUB) was introduced to handle class imbalanced problem in PNNs is capable enough to resolve multi-class imbalanced problem persisting in both standard and proposed PNNs. Final model proposed in the study with proposed PNN and proposed MCUB technique is competent in forecasting the direction of a given stock market index with higher accuracy, which helps stakeholders of stock markets make accurate decisions." @default.
- W2991935909 created "2019-12-13" @default.
- W2991935909 creator A5009577254 @default.
- W2991935909 creator A5065266082 @default.
- W2991935909 creator A5065941078 @default.
- W2991935909 date "2019-12-06" @default.
- W2991935909 modified "2023-09-30" @default.
- W2991935909 title "An Improved Probabilistic Neural Network Model for Directional Prediction of a Stock Market Index" @default.
- W2991935909 cites W1503345968 @default.
- W2991935909 cites W1677862352 @default.
- W2991935909 cites W1681699189 @default.
- W2991935909 cites W1963502494 @default.
- W2991935909 cites W1964168965 @default.
- W2991935909 cites W1970826986 @default.
- W2991935909 cites W1986378085 @default.
- W2991935909 cites W2001412000 @default.
- W2991935909 cites W2011982579 @default.
- W2991935909 cites W2015452969 @default.
- W2991935909 cites W2023959308 @default.
- W2991935909 cites W2027218366 @default.
- W2991935909 cites W2046574432 @default.
- W2991935909 cites W2068588953 @default.
- W2991935909 cites W2072664345 @default.
- W2991935909 cites W2078599181 @default.
- W2991935909 cites W2084133018 @default.
- W2991935909 cites W2089594275 @default.
- W2991935909 cites W2092583488 @default.
- W2991935909 cites W2113159968 @default.
- W2991935909 cites W2158663270 @default.
- W2991935909 cites W2164330572 @default.
- W2991935909 cites W2169471158 @default.
- W2991935909 cites W2324923 @default.
- W2991935909 cites W2412173772 @default.
- W2991935909 cites W2691342027 @default.
- W2991935909 cites W3124185353 @default.
- W2991935909 cites W3125462345 @default.
- W2991935909 cites W4212883601 @default.
- W2991935909 cites W72054495 @default.
- W2991935909 doi "https://doi.org/10.3390/app9245334" @default.
- W2991935909 hasPublicationYear "2019" @default.
- W2991935909 type Work @default.
- W2991935909 sameAs 2991935909 @default.
- W2991935909 citedByCount "8" @default.
- W2991935909 countsByYear W29919359092020 @default.
- W2991935909 countsByYear W29919359092022 @default.
- W2991935909 countsByYear W29919359092023 @default.
- W2991935909 crossrefType "journal-article" @default.
- W2991935909 hasAuthorship W2991935909A5009577254 @default.
- W2991935909 hasAuthorship W2991935909A5065266082 @default.
- W2991935909 hasAuthorship W2991935909A5065941078 @default.
- W2991935909 hasBestOaLocation W29919359091 @default.
- W2991935909 hasConcept C10138342 @default.
- W2991935909 hasConcept C119857082 @default.
- W2991935909 hasConcept C134342201 @default.
- W2991935909 hasConcept C149782125 @default.
- W2991935909 hasConcept C154945302 @default.
- W2991935909 hasConcept C161584116 @default.
- W2991935909 hasConcept C162324750 @default.
- W2991935909 hasConcept C166957645 @default.
- W2991935909 hasConcept C175202392 @default.
- W2991935909 hasConcept C19244329 @default.
- W2991935909 hasConcept C205649164 @default.
- W2991935909 hasConcept C2779343474 @default.
- W2991935909 hasConcept C2780299701 @default.
- W2991935909 hasConcept C41008148 @default.
- W2991935909 hasConcept C49937458 @default.
- W2991935909 hasConcept C50644808 @default.
- W2991935909 hasConcept C88389905 @default.
- W2991935909 hasConceptScore W2991935909C10138342 @default.
- W2991935909 hasConceptScore W2991935909C119857082 @default.
- W2991935909 hasConceptScore W2991935909C134342201 @default.
- W2991935909 hasConceptScore W2991935909C149782125 @default.
- W2991935909 hasConceptScore W2991935909C154945302 @default.
- W2991935909 hasConceptScore W2991935909C161584116 @default.
- W2991935909 hasConceptScore W2991935909C162324750 @default.
- W2991935909 hasConceptScore W2991935909C166957645 @default.
- W2991935909 hasConceptScore W2991935909C175202392 @default.
- W2991935909 hasConceptScore W2991935909C19244329 @default.
- W2991935909 hasConceptScore W2991935909C205649164 @default.
- W2991935909 hasConceptScore W2991935909C2779343474 @default.
- W2991935909 hasConceptScore W2991935909C2780299701 @default.
- W2991935909 hasConceptScore W2991935909C41008148 @default.
- W2991935909 hasConceptScore W2991935909C49937458 @default.
- W2991935909 hasConceptScore W2991935909C50644808 @default.
- W2991935909 hasConceptScore W2991935909C88389905 @default.
- W2991935909 hasIssue "24" @default.
- W2991935909 hasLocation W29919359091 @default.
- W2991935909 hasLocation W29919359092 @default.
- W2991935909 hasLocation W29919359093 @default.
- W2991935909 hasOpenAccess W2991935909 @default.
- W2991935909 hasPrimaryLocation W29919359091 @default.
- W2991935909 hasRelatedWork W1532899387 @default.
- W2991935909 hasRelatedWork W154148467 @default.
- W2991935909 hasRelatedWork W1912507756 @default.
- W2991935909 hasRelatedWork W2048220287 @default.
- W2991935909 hasRelatedWork W2067837718 @default.
- W2991935909 hasRelatedWork W2355754418 @default.
- W2991935909 hasRelatedWork W2374528926 @default.