Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991939752> ?p ?o ?g. }
- W2991939752 endingPage "1315" @default.
- W2991939752 startingPage "1315" @default.
- W2991939752 abstract "The isothermal tensile test of medium carbon steel material was conducted at deformation temperatures varying from 650 to 950 ∘ C with an interval of 100 ∘ C and strain rates ranging from 0.05 to 1.0 s − 1 . In addition, the scanning electron microscopy (SEM) procedures were exploited to study about the surface morphology of medium carbon steel material. Using the experimental data, the artificial neural network (ANN) model with a back-propagation (BP) algorithm was proposed to predict the hot deformation behavior of medium carbon steel material. For model training and testing purpose, the variables such as deformation temperature, strain rate, and strain data were considered as inputs and the flow stress data were used as targets. Before running the neural network, the test data were normalized to effectively run the problem and after solving the problem, the obtained results were again converted in order to achieve the actual data. According to the predicted results, the coefficient of determination ( R 2 ) and the average absolute relative error between the predicted flow stress and the experimental data were determined as 0.999 and 1.335%, respectively. For improving the model predictability, the constrained nonlinear function based optimization procedures was adopted to obtain the best candidate selections of weights and biases. By evaluating each test conditions, it was found that the average absolute relative error based on the optimized ANN-BP model varied from 0.728% to 1.775%. Overall, the trained ANN-BP models proved to be much more efficient and accurate by means of flow stress prediction against the experimental data for all the tested conditions. These optimized results displayed that an ANN-BP model is more accurate for flow stress prediction than that of the conventional flow stress models." @default.
- W2991939752 created "2019-12-13" @default.
- W2991939752 creator A5027987030 @default.
- W2991939752 creator A5045146010 @default.
- W2991939752 creator A5087709279 @default.
- W2991939752 date "2019-12-06" @default.
- W2991939752 modified "2023-10-14" @default.
- W2991939752 title "Hybrid Machine Learning Optimization Approach to Predict Hot Deformation Behavior of Medium Carbon Steel Material" @default.
- W2991939752 cites W1804536602 @default.
- W2991939752 cites W1971675410 @default.
- W2991939752 cites W1974839848 @default.
- W2991939752 cites W1976458978 @default.
- W2991939752 cites W1981743143 @default.
- W2991939752 cites W1983389528 @default.
- W2991939752 cites W1986974938 @default.
- W2991939752 cites W2004874118 @default.
- W2991939752 cites W2005444742 @default.
- W2991939752 cites W2009627947 @default.
- W2991939752 cites W2010537950 @default.
- W2991939752 cites W2015885573 @default.
- W2991939752 cites W2017776147 @default.
- W2991939752 cites W2019775776 @default.
- W2991939752 cites W2021797314 @default.
- W2991939752 cites W2024073059 @default.
- W2991939752 cites W2030951778 @default.
- W2991939752 cites W2031870791 @default.
- W2991939752 cites W2034160476 @default.
- W2991939752 cites W2043921324 @default.
- W2991939752 cites W2061217710 @default.
- W2991939752 cites W2080320042 @default.
- W2991939752 cites W2086351393 @default.
- W2991939752 cites W2086372520 @default.
- W2991939752 cites W2093687123 @default.
- W2991939752 cites W2153795953 @default.
- W2991939752 cites W2159787292 @default.
- W2991939752 cites W2291293510 @default.
- W2991939752 cites W2341869148 @default.
- W2991939752 cites W2346746270 @default.
- W2991939752 cites W2612076223 @default.
- W2991939752 cites W2772627533 @default.
- W2991939752 cites W2804083182 @default.
- W2991939752 cites W2909880621 @default.
- W2991939752 cites W2911243976 @default.
- W2991939752 cites W2911300082 @default.
- W2991939752 cites W2911502648 @default.
- W2991939752 cites W2914078492 @default.
- W2991939752 cites W2916653303 @default.
- W2991939752 cites W2940207255 @default.
- W2991939752 doi "https://doi.org/10.3390/met9121315" @default.
- W2991939752 hasPublicationYear "2019" @default.
- W2991939752 type Work @default.
- W2991939752 sameAs 2991939752 @default.
- W2991939752 citedByCount "21" @default.
- W2991939752 countsByYear W29919397522020 @default.
- W2991939752 countsByYear W29919397522021 @default.
- W2991939752 countsByYear W29919397522022 @default.
- W2991939752 countsByYear W29919397522023 @default.
- W2991939752 crossrefType "journal-article" @default.
- W2991939752 hasAuthorship W2991939752A5027987030 @default.
- W2991939752 hasAuthorship W2991939752A5045146010 @default.
- W2991939752 hasAuthorship W2991939752A5087709279 @default.
- W2991939752 hasBestOaLocation W29919397521 @default.
- W2991939752 hasConcept C105795698 @default.
- W2991939752 hasConcept C11413529 @default.
- W2991939752 hasConcept C115051666 @default.
- W2991939752 hasConcept C121332964 @default.
- W2991939752 hasConcept C122383733 @default.
- W2991939752 hasConcept C128990827 @default.
- W2991939752 hasConcept C133347239 @default.
- W2991939752 hasConcept C139945424 @default.
- W2991939752 hasConcept C154945302 @default.
- W2991939752 hasConcept C155032097 @default.
- W2991939752 hasConcept C159985019 @default.
- W2991939752 hasConcept C16910744 @default.
- W2991939752 hasConcept C192562407 @default.
- W2991939752 hasConcept C197640229 @default.
- W2991939752 hasConcept C199360897 @default.
- W2991939752 hasConcept C204366326 @default.
- W2991939752 hasConcept C26771246 @default.
- W2991939752 hasConcept C33923547 @default.
- W2991939752 hasConcept C41008148 @default.
- W2991939752 hasConcept C50644808 @default.
- W2991939752 hasConcept C76155785 @default.
- W2991939752 hasConcept C97355855 @default.
- W2991939752 hasConceptScore W2991939752C105795698 @default.
- W2991939752 hasConceptScore W2991939752C11413529 @default.
- W2991939752 hasConceptScore W2991939752C115051666 @default.
- W2991939752 hasConceptScore W2991939752C121332964 @default.
- W2991939752 hasConceptScore W2991939752C122383733 @default.
- W2991939752 hasConceptScore W2991939752C128990827 @default.
- W2991939752 hasConceptScore W2991939752C133347239 @default.
- W2991939752 hasConceptScore W2991939752C139945424 @default.
- W2991939752 hasConceptScore W2991939752C154945302 @default.
- W2991939752 hasConceptScore W2991939752C155032097 @default.
- W2991939752 hasConceptScore W2991939752C159985019 @default.
- W2991939752 hasConceptScore W2991939752C16910744 @default.
- W2991939752 hasConceptScore W2991939752C192562407 @default.
- W2991939752 hasConceptScore W2991939752C197640229 @default.